Home
Class 12
MATHS
In !ABC it is given that a:b:c = cos A:c...

In `!ABC` it is given that a:b:c = cos A:cos B:cos C
Statement-1: `!ABC` is equilateral.
Statement-2: cosA`=(b^(2)+c^(2)-a^(2))/(2bc),cosB=(c^(2)+a^(2)-b^(2))/(2ac),cosC=(a^(2)+b^(2)-c^(2))/(2ab)`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement- 2 is True.

Text Solution

AI Generated Solution

To solve the problem, we need to analyze the statements given about triangle \(ABC\) and the relationship between the sides and the cosines of the angles. ### Step-by-Step Solution: 1. **Understanding the given ratio**: We are given that \( a:b:c = \cos A:\cos B:\cos C \). This implies that: \[ \frac{a}{\cos A} = \frac{b}{\cos B} = \frac{c}{\cos C} ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|97 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise SOLVED MCQ|2 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

If A+B+C=pi , prove that : cos2A+cos2B+cos2C=-1-4cosA cosB cosC

Prove that (b+c)cosA+(c+a)cosB+(a+b)cosC=2sdot

In DeltaABC , prove that: (1+cosA.cos(B-C))/(1+cosC.cos(A-B))=(b^(2)+c^(2))/(a^(2)+b^(2))

In any Delta ABC, ((b-c)/(a))cos^(2)((A)/(2))+((c-a)/(b))cos ^(2)((b )/(2))+((a-b)/(2 ))cos ^(2)((C)/(2)) is equal

In triangle ABC, /_C = (2pi)/3 then the value of cos^2 A + cos^2 B - cos A.cos B is equal

In DeltaABC , prove that: (b-c)/acos^(2)A/2+(c-a)/(b)cos^(2)B/2+(a-b)/(c ).cos^(2)C/2=0

In DeltaABC , prove that: a(cosC-cosB)=2(b-c)cos^(2)A/2

Identify like terms in the following: abc, ab^(2)c, acb^(2), c^(2)ab, b^(2)ac, a^(2)bc, cab^(2)

a(cosC-cosB)=2(b-c)cos^2A/2