Home
Class 12
MATHS
In a DeltaA B Csum(b+c)tanA/2tan((B-C)/2...

In a `DeltaA B Csum(b+c)tanA/2tan((B-C)/2)=`

A

a

B

b

C

c

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given in the triangle \( \Delta ABC \), we need to evaluate the expression: \[ \sum (b+c) \tan\left(\frac{A}{2}\right) \tan\left(\frac{B-C}{2}\right) \] ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (b+c) \tan\left(\frac{A}{2}\right) \tan\left(\frac{B-C}{2}\right) \). Here, \( A, B, C \) are the angles of the triangle opposite to the sides \( a, b, c \) respectively. 2. **Using the Identity for \( \tan\left(\frac{B-C}{2}\right)**: We can rewrite \( \tan\left(\frac{B-C}{2}\right) \) using the identity: \[ \tan\left(\frac{B-C}{2}\right) = \frac{\tan\left(\frac{B}{2}\right) - \tan\left(\frac{C}{2}\right)}{1 + \tan\left(\frac{B}{2}\right) \tan\left(\frac{C}{2}\right)} \] However, for our purpose, we can also express it as: \[ \tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c} \cot\left(\frac{A}{2}\right) \] 3. **Substituting Back into the Expression**: Substitute this back into the expression: \[ (b+c) \tan\left(\frac{A}{2}\right) \cdot \frac{b-c}{b+c} \cot\left(\frac{A}{2}\right) \] Here, \( (b+c) \) cancels out: \[ = (b-c) \tan\left(\frac{A}{2}\right) \cot\left(\frac{A}{2}\right) \] 4. **Using the Identity \( \tan x \cot x = 1 \)**: Since \( \tan\left(\frac{A}{2}\right) \cot\left(\frac{A}{2}\right) = 1 \): \[ = (b-c) \] 5. **Repeating for Other Angles**: We repeat this process for the other angles \( B \) and \( C \): - For \( B \): \( (c-a) \) - For \( C \): \( (a-b) \) 6. **Summing Up**: Now we sum these results: \[ (b-c) + (c-a) + (a-b) \] 7. **Simplifying the Sum**: When we simplify this: \[ = b - c + c - a + a - b = 0 \] ### Final Answer: Thus, the final answer is: \[ \sum (b+c) \tan\left(\frac{A}{2}\right) \tan\left(\frac{B-C}{2}\right) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|97 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC,(a+b+c)(tan(A/2)+tan (B/2))=

In a "DeltaA B C prove that tan(("A"+"B")/2)=cot("C"/2)

. In a DeltaABC, If tan (A/2) , tan(B/2), tan (C/2) , are in H.P.,then a,b,c are in

In a DeltaA B C prove that cos ((A+B)/2)=sin (C/2).

In Delta ABC if tan(A/2) tan(B/2) + tan(B/2) tan(C/2) = 2/3 then a+c

Statement-1: In a !ABC , (a+b+c)(tanA/2+tanB/2)=2c cotC/2 Statement-2: In a !ABC , a = b cos C + c cos B

In any DeltaA B C ,suma(sinB-sin C)= (a) a^2+b^2+c^2 (b) a^2 (c) b^2 (d) 0

In a DeltaA B C ,1/(1+tan^2(A/2))+1/(1+tan^2(B/2))+1/(1+tan^2(C/2))=k [1+sin(A/2) sin(B/2) sin(C/2)], then the value of k is

In any DeltaABC , prove that (i) tan""(B-C)/2=(b-c)/(b+c)cot""A/2 . (ii) If angleB=90^(@) , prove that tan(A/2)=sqrt(((b-c)/(b+c))) . (iii) If angleC=90^(@) , prove that tan((A−B)/2)/tan((A+B)/2)=(a-b)/(a+b) .

In figure D is a point on side BC of a DeltaA B C such that (B D)/(C D)=(A B)/(A C) . Prove that AD is the bisector of /_B A C .

OBJECTIVE RD SHARMA ENGLISH-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Chapter Test
  1. If in a triangle ABC, right angled at B, s-a=3, s-c=2, then the values...

    Text Solution

    |

  2. If the sides of a triangle are a, b and sqrt(a^(2) + ab + b^(2)), then...

    Text Solution

    |

  3. In a DeltaA B Csum(b+c)tanA/2tan((B-C)/2)=

    Text Solution

    |

  4. In triangle ABC, angleA=pi/3 and b:c =2:3, tan theta=sqrt3/5, 0 lt the...

    Text Solution

    |

  5. In a DeltaABC, AD is the altitude from A. Given b gt c, angleC=23^(@)"...

    Text Solution

    |

  6. If the angles A, B, C (in that order) of triangle ABC are in arithmeti...

    Text Solution

    |

  7. If the radius of the incircle of a triangle withits sides 5k, 6k and 5...

    Text Solution

    |

  8. Two sides of a triangle are 2sqrt2 and 2sqrt3cm and the angle opposite...

    Text Solution

    |

  9. In a triangleABC, a=13cm, b=12 and c=5cm The distance of A from BC is

    Text Solution

    |

  10. In a triangleABC,B=pi/8, C=(5pi)/(8). The altitude from A to the side ...

    Text Solution

    |

  11. In DeltaABC, A = (2pi)/(3), b -c = 3 sqrt3 cm and " area of " Delta AB...

    Text Solution

    |

  12. In DeltaABC if a=(b-c)sectheta then (2sqrt(bc))/(b-c)sin(A/2)=

    Text Solution

    |

  13. In a DeltaABC, (a + b + c) (b + c - a) = lambda bc. (where symbols ha...

    Text Solution

    |

  14. If in DeltaABC, a=2b and A=3B, then A is equal to

    Text Solution

    |

  15. Let the angles A , Ba n dC of triangle A B C be in AdotPdot and let b ...

    Text Solution

    |

  16. In a triangle ABC, AD, BE and CF are the altitudes and R is the circum...

    Text Solution

    |

  17. If in a triangleABC=(a)/(cos A)=(b)/(cos B), then

    Text Solution

    |

  18. In a triangleABC, s/R=

    Text Solution

    |

  19. If in a triangleABC, A=pi/3 and AD is the median, then

    Text Solution

    |

  20. Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) +...

    Text Solution

    |