Home
Class 12
MATHS
In a triangleABC"if c"=(a+b) sin theta a...

In a `triangleABC"if c"=(a+b) sin theta and cos theta=(ksqrtab)/(a+b)," then "k=`

A

`2 cos""C/2`

B

`2cos""B/2`

C

`2cos""A/2`

D

`cos""C/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the given triangle \( ABC \) where \( c = (a + b) \sin \theta \) and \( \cos \theta = \frac{k \sqrt{ab}}{a + b} \), we can follow these steps: ### Step-by-Step Solution: 1. **Start with the given equations**: \[ c = (a + b) \sin \theta \] \[ \cos \theta = \frac{k \sqrt{ab}}{a + b} \] 2. **Use the identity for cosine**: Recall that \( \cos^2 \theta + \sin^2 \theta = 1 \). We can express \( \cos \theta \) in terms of \( \sin \theta \): \[ \cos \theta = \sqrt{1 - \sin^2 \theta} \] 3. **Substitute \( \sin \theta \)**: From the first equation, we have: \[ \sin \theta = \frac{c}{a + b} \] Substitute this into the cosine identity: \[ \cos \theta = \sqrt{1 - \left(\frac{c}{a + b}\right)^2} \] 4. **Set the two expressions for \( \cos \theta \) equal**: \[ \sqrt{1 - \left(\frac{c}{a + b}\right)^2} = \frac{k \sqrt{ab}}{a + b} \] 5. **Square both sides**: \[ 1 - \left(\frac{c}{a + b}\right)^2 = \left(\frac{k \sqrt{ab}}{a + b}\right)^2 \] 6. **Multiply through by \( (a + b)^2 \)** to eliminate the denominator: \[ (a + b)^2 - c^2 = k^2 ab \] 7. **Rearranging gives**: \[ (a + b)^2 - c^2 = k^2 ab \] 8. **Use the cosine rule**: From the cosine rule, we know: \[ c^2 = a^2 + b^2 - 2ab \cos C \] Therefore: \[ (a + b)^2 - (a^2 + b^2 - 2ab \cos C) = k^2 ab \] Simplifying gives: \[ 2ab + 2ab \cos C = k^2 ab \] 9. **Factor out \( ab \)**: \[ 2(1 + \cos C) = k^2 \] 10. **Take the square root**: \[ k = \sqrt{2(1 + \cos C)} \] 11. **Using the double angle formula**: Recall that \( \cos 2\theta = 2\cos^2 \theta - 1 \). Thus: \[ 1 + \cos C = 2\cos^2\left(\frac{C}{2}\right) \] Therefore: \[ k = 2\cos\left(\frac{C}{2}\right) \] ### Final Result: Thus, the value of \( k \) is: \[ k = 2 \cos\left(\frac{C}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|97 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If Z = (A sin theta + B cos theta)/(A + B) , then

a sin^(2) theta + b cos^(2) theta =c implies tan^(2) theta =

In Figure, A D=D B \ and \ /_B is a right angle. Determine. (a)\ sin theta quad (b)\ cos theta quad (c)\ tan theta quad (d)\ sin^2 theta+cos^2 theta

The area of the triangle with vertices (a, 0), (a cos theta, b sin theta), (a cos theta, -b sin theta) is

In a triangle ABC, prove that for any angle theta, b cos (A - theta) + a cos (B + theta) = C cos theta .

From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c int R has roots alpha and beta then alpha + beta=-b/a and alpha beta = c/a . Trignometric functions sin theta and cos theta, tan theta and sec theta, " cosec " theta and cot theta obey sin^(2)theta + cos^(2)theta =1 . A linear relation in sin theta and cos theta, sec theta and tan theta or " cosec "theta and cos theta can be transformed into a quadratic equation in, say, sin theta, tan theta or cot theta respectively. And then one can apply sum and product of roots to find the desired result. Let a cos theta, b sintheta=c have two roots theta_(1) and theta_(2) . theta_(1) ne theta_(2) . The vlaue of cos(theta_(1) + theta_(2)) is a and b not being simultaneously zero)

From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c R has roots alpha and beta then alpha + beta=-b/a and alpha beta = c/a . Trignometric functions sin theta and cos theta, tan theta and sec theta, " cosec " theta and cot theta obey sin^(2)theta + cos^(2)theta =1 . A linear relation in sin theta and cos theta, sec theta and tan theta or " cosec "theta and cos theta can be transformed into a quadratic equation in, say, sin theta, tan theta or cot theta respectively. And then one can apply sum and product of roots to find the desired result. Let a cos theta, b sintheta=c have two roots theta_(1) and theta_(2) . theta_(1) ne theta_(2) . The value of cos(theta_(1)-theta_(2)) is (a and b not being simultaneously zero)

From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c in R has roots alpha and beta then alpha + beta=-b/a and alpha beta = c/a . Trignometric functions sin theta and cos theta, tan theta and sec theta, " cosec " theta and cot theta obey sin^(2)theta + cos^(2)theta =1 . A linear relation in sin theta and cos theta, sec theta and tan theta or " cosec "theta and cos theta can be transformed into a quadratic equation in, say, sin theta, tan theta or cot theta respectively. And then one can apply sum and product of roots to find the desired result. Let a cos theta, b sintheta=c have two roots theta_(1) and theta_(2) . theta_(1) ne theta_(2) . The values of tan theta_(1) tan theta_(2) is (given |b| ne |c|)

If tan theta=a/b then b cos 2theta+asin 2theta=

if theta is a parameter then x=a ( sin theta + cos theta), y=b( sin theta - cos theta ) respresents

OBJECTIVE RD SHARMA ENGLISH-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Chapter Test
  1. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  2. Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) +...

    Text Solution

    |

  3. The sides of a triangle are x^2+x+1,2x+1,a n dx^2-1 . Prove that the g...

    Text Solution

    |

  4. In a triangleABC," if "C=60^(@)," then "(a)/(b+c)+(b)/(c+a)=

    Text Solution

    |

  5. In a triangleABC, if a,c,b are in A.P. then the value of (a cos B-b co...

    Text Solution

    |

  6. If a DeltaABC is right angled at B, then the diameter of the incircle ...

    Text Solution

    |

  7. The angle of a right-angled triangle are in AP. Then , find the ratio ...

    Text Solution

    |

  8. The angle of a triangle are in the ratio 1 : 2 : 7, prove that the rat...

    Text Solution

    |

  9. In DeltaABC, let a=5, b=4 and cos (A-B=(31)/(32)), then which of the f...

    Text Solution

    |

  10. In a triangleABC"if c"=(a+b) sin theta and cos theta=(ksqrtab)/(a+b),"...

    Text Solution

    |

  11. In triangleABC," if"(s-a)/(Delta)=1/8, (s-b)/(Delta)=1/12 and (s-c)/(D...

    Text Solution

    |

  12. In a triangle ABC if 2a=sqrt(3)b+c, then possible relation is

    Text Solution

    |

  13. If in a triangle A B C ,acos^2(C/2)+ c cos^2(A/2)=(3b)/2, then the si...

    Text Solution

    |

  14. The sides of a right angled triangle are in A.P., then they are in the...

    Text Solution

    |

  15. ln a triangle ABC, B=90^@ then the value of tan(A/2)=

    Text Solution

    |

  16. In a triangleABC," if "B=90^(@), then the value of tan""A/2 in terms o...

    Text Solution

    |

  17. In a DeltaABC ,a =5 , b= 4 , and tan(C/2)=sqrt(7/9), then c =

    Text Solution

    |

  18. In a triangleABC," if "C=60^(@)," then "(a)/(b+c)+(b)/(c+a)=

    Text Solution

    |

  19. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  20. Show that (r(1))/(bc)+(r(2))/(ca)+ (r(3))/(ab)=2R-r

    Text Solution

    |