Home
Class 12
MATHS
ln a triangle ABC, B=90^@ then the value...

ln a triangle `ABC, B=90^@` then the value of `tan(A/2)=`

A

`sqrt((b+c)/(b-c))`

B

`sqrt((b-c)/(b+c))`

C

`sqrt((a+c)/(a-c))`

D

`sqrt((a-c)/(a+c))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan\left(\frac{A}{2}\right) \) in triangle \( ABC \) where \( B = 90^\circ \), we can follow these steps: ### Step 1: Understand the triangle properties In triangle \( ABC \), since \( B = 90^\circ \), we know that the sum of angles in a triangle is \( 180^\circ \). Therefore, we can express the angles as: \[ A + B + C = 180^\circ \implies A + 90^\circ + C = 180^\circ \implies A + C = 90^\circ \] This implies that \( C = 90^\circ - A \). **Hint:** Remember that the sum of angles in a triangle is always \( 180^\circ \). ### Step 2: Use the half-angle tangent formula We know the formula for \( \tan\left(\frac{A}{2}\right) \) in terms of the angles of the triangle: \[ \tan\left(\frac{A}{2}\right) = \frac{\sin A}{1 + \cos A} \] However, we can also express it using the angles \( B \) and \( C \): \[ \tan\left(\frac{A}{2}\right) = \frac{B - C}{B + C} \cdot \cot\left(\frac{A}{2}\right) \] **Hint:** The half-angle formulas can often simplify the problem. ### Step 3: Substitute \( C \) Since we have \( C = 90^\circ - A \), we can substitute this into our formula: \[ \tan\left(\frac{A}{2}\right) = \frac{B - (90^\circ - A)}{B + (90^\circ - A)} \] **Hint:** Substituting known values can simplify the expression. ### Step 4: Simplify the expression Substituting \( B = 90^\circ \): \[ \tan\left(\frac{A}{2}\right) = \frac{90^\circ - (90^\circ - A)}{90^\circ + (90^\circ - A)} = \frac{A}{180^\circ - A} \] **Hint:** Simplifying fractions can lead to clearer results. ### Step 5: Use the identity for tangent We know that \( \tan\left(\frac{A}{2}\right) \) can also be expressed as: \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{B - C}{B + C}} \] Using \( C = 90^\circ - A \): \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{B - (90^\circ - A)}{B + (90^\circ - A)}} \] **Hint:** Using square roots can help in finding the final answer. ### Step 6: Final expression After simplifying, we find: \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{B - C}{B + C}} = \sqrt{\frac{90^\circ - (90^\circ - A)}{90^\circ + (90^\circ - A)}} = \sqrt{\frac{A}{180^\circ - A}} \] Thus, the final result is: \[ \tan\left(\frac{A}{2}\right) = \sqrt{\frac{B - C}{B + C}} \] ### Final Answer The value of \( \tan\left(\frac{A}{2}\right) \) is \( \sqrt{\frac{B - C}{B + C}} \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|97 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC b= sqrt(3)+1, c=sqrt(3)-1 , angle A = 60 ^@ then the value of tan (B-C)/(2) is :-

If A,B,C are angles of a triangle ,then the minimum value of tan^(2)(A/2)+tan^(2)(B/2)+tan^(2)(C/2) , is

If in triangle ABC (r)/(r_(1))=(1)/(2), then the value of tan(A/2)(tan(B/2)+tan(C/2)) is equal to

If in a Delta ABC, /_ C=90^@, then the maximum value of sinA sinB is

In a triangle ABC, B=90^@ and D is the mid-oint of BC then prove that AC^2=AD^2+3 CD^2

In a triangle ABC if tan C lt 0 then :

In Delta ABC , angle B = 90^(@) find the values of : sin A cos C + cos A sin C

In triangle ABC, a = 2, b = 3,c = 4 , then the value of cos A is

In a triangle Delta ABC , prove the following : (tan A//2)/((a-b)(a-c))+(tan B//2)/((b-c)(b-a))+(tan C//2)/((c-a)(c-b)) = (1)/(Delta)

If in a triangle ABC, b + c = 3a, then tan (B/2)tan(C/2) is equal to

OBJECTIVE RD SHARMA ENGLISH-PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM-Chapter Test
  1. if A+ B + C = pi, and cos A = cos B cos C, show that 2 cot B cot C=1.

    Text Solution

    |

  2. Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) +...

    Text Solution

    |

  3. The sides of a triangle are x^2+x+1,2x+1,a n dx^2-1 . Prove that the g...

    Text Solution

    |

  4. In a triangleABC," if "C=60^(@)," then "(a)/(b+c)+(b)/(c+a)=

    Text Solution

    |

  5. In a triangleABC, if a,c,b are in A.P. then the value of (a cos B-b co...

    Text Solution

    |

  6. If a DeltaABC is right angled at B, then the diameter of the incircle ...

    Text Solution

    |

  7. The angle of a right-angled triangle are in AP. Then , find the ratio ...

    Text Solution

    |

  8. The angle of a triangle are in the ratio 1 : 2 : 7, prove that the rat...

    Text Solution

    |

  9. In DeltaABC, let a=5, b=4 and cos (A-B=(31)/(32)), then which of the f...

    Text Solution

    |

  10. In a triangleABC"if c"=(a+b) sin theta and cos theta=(ksqrtab)/(a+b),"...

    Text Solution

    |

  11. In triangleABC," if"(s-a)/(Delta)=1/8, (s-b)/(Delta)=1/12 and (s-c)/(D...

    Text Solution

    |

  12. In a triangle ABC if 2a=sqrt(3)b+c, then possible relation is

    Text Solution

    |

  13. If in a triangle A B C ,acos^2(C/2)+ c cos^2(A/2)=(3b)/2, then the si...

    Text Solution

    |

  14. The sides of a right angled triangle are in A.P., then they are in the...

    Text Solution

    |

  15. ln a triangle ABC, B=90^@ then the value of tan(A/2)=

    Text Solution

    |

  16. In a triangleABC," if "B=90^(@), then the value of tan""A/2 in terms o...

    Text Solution

    |

  17. In a DeltaABC ,a =5 , b= 4 , and tan(C/2)=sqrt(7/9), then c =

    Text Solution

    |

  18. In a triangleABC," if "C=60^(@)," then "(a)/(b+c)+(b)/(c+a)=

    Text Solution

    |

  19. If p(1),p(2),p(3) are altitudes of a triangle ABC from the vertices A,...

    Text Solution

    |

  20. Show that (r(1))/(bc)+(r(2))/(ca)+ (r(3))/(ab)=2R-r

    Text Solution

    |