Home
Class 12
MATHS
Statement I If 2 sin 2x - cos 2x=1 , x ...

Statement I If ` 2 sin 2x - cos 2x=1 , x ne (2n+1) pi//2, n ` is the integer , then ` sin 2x + cos 2x ` is equal to 1/5 .
Statement II `sin 2x+ cos 2x=(1+2 tan x - tan^(2)x)/(1+tan^(2) x)`

A

Statement -1 is true, Statement-2 is true, Statement -2 is a correct explanation for Statement-1.

B

Statement -1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement -1.

C

Statement-1 is True, Statement-2 is False.

D

Statement -1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
D

We have,
`"sin" 2x = (2"tan"x)/(1+"tan"^(2)x)" and cos" 2x = (1-"tan"^(2)x)/(1+"tan"^(2)x)`
`therefore "sin"2x+ "cos" 2x = (1+2"tan"x - "tan"^(2)x)/(1+"tan"^(2)x)`
So, statement-2 is true.
Let us now consider statement-1.
We have, `2"sin" 2x-"cos" 2x = 1`
`rArr 2"sin" 2x = 2"cos"^(2)x`
`rArr 2"sin" x "cos" x = "cos"^(2) x`
`rArr "tan" x = (1)/(2) " " [because x ne (2n + 1)(pi)/(2) therefore "cos" x ne 0]`
`therefore "sin"2x + "cos"2x = (1+2"tan"x-"tan"^(2)x)/(1+"tan"^(2)x)`
`rArr "sin" 2x + "cos"2x = (2-(1)/(4))/(1+(1)/(4)) = (7)/(5)`
So, statement-1 is not correct.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Statement -1: If 2"sin"2x - "cos" 2x=1, x ne (2n+1) (pi)/(2), n in Z, "then sin" 2x + "cos" 2x = 5 Statement-2: "sin"2x + "cos"2x = (1+2"tan" x - "tan"^(2)x)/(1+"tan"^(2)x)

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

If tan x + cot x =2 , then sin^(2n)x + cos^(2n) x is equal to

If f (tan x) = cos 2x , x != (2n + 1) pi/2, n in I then incorrect statement is

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

Show that '(1-cos 2x + sin x)/(sin 2x + cos x) = tan x'

If sin^2 (2 cos^-1 (tan x)) = 1 then x may be

lim_(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

Prove that : (sin x + sin 3x)/(cos x + cos 3x) = tan 2x