Home
Class 12
MATHS
If the expression ([s in(x/2)+cos(x/2)-...

If the expression `([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])` is real, then the set of all possible values of `x` is.........

A

`2n pi + 2 "tan"^(-1)k, k in R, n in Z`

B

`2n pi + 2 "tan"^(-1)k," where " k in(0, 1), n in Z`

C

`2n pi + 2"tan"^(-1)k, "where" k in (1, 2), n in Z`

D

`2n pi + 2"tan"^(-1) k, k in (2, 3), n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( x \) for which the expression \[ \frac{\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) - i \tan(x)}{1 + 2i \sin\left(\frac{x}{2}\right)} \] is real. ### Step 1: Set the expression to be real For the expression to be real, the imaginary part must equal zero. ### Step 2: Rationalize the denominator We can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) - i \tan(x))(1 - 2i \sin\left(\frac{x}{2}\right))}{(1 + 2i \sin\left(\frac{x}{2}\right))(1 - 2i \sin\left(\frac{x}{2}\right))} \] The denominator simplifies to: \[ 1 + 4 \sin^2\left(\frac{x}{2}\right) \] ### Step 3: Expand the numerator Now, we expand the numerator: \[ (\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right))(1 - 2i \sin\left(\frac{x}{2}\right)) - i \tan(x)(1 - 2i \sin\left(\frac{x}{2}\right)) \] This gives us: \[ \sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) - 2i \sin^2\left(\frac{x}{2}\right) - i \tan(x) + 2 \tan(x) \sin\left(\frac{x}{2}\right) \] ### Step 4: Collect real and imaginary parts The real part is: \[ \sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) \] The imaginary part is: \[ -2 \sin^2\left(\frac{x}{2}\right) - \tan(x) + 2 \tan(x) \sin\left(\frac{x}{2}\right) \] ### Step 5: Set the imaginary part to zero To find when the expression is real, we set the imaginary part to zero: \[ -2 \sin^2\left(\frac{x}{2}\right) - \tan(x) + 2 \tan(x) \sin\left(\frac{x}{2}\right) = 0 \] ### Step 6: Substitute \(\tan(x)\) Using the identity \(\tan(x) = \frac{\sin(x)}{\cos(x)}\), we can rewrite the equation as: \[ -2 \sin^2\left(\frac{x}{2}\right) - \frac{\sin(x)}{\cos(x)} + 2 \frac{\sin(x)}{\cos(x)} \sin\left(\frac{x}{2}\right) = 0 \] ### Step 7: Simplify the equation Using the double angle identity: \[ \sin(x) = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \] We can substitute this into our equation and simplify further. ### Step 8: Solve the resulting equation After simplification, we will arrive at a polynomial equation in terms of \(\tan\left(\frac{x}{2}\right)\). ### Step 9: Find the roots By solving this polynomial equation, we can find the values of \(\tan\left(\frac{x}{2}\right)\) and subsequently find \(x\). ### Step 10: General solution The general solution will be of the form: \[ x = 2n\pi + 2\tan^{-1}(k) \] where \(k\) are the roots found in the previous step. ### Final Answer The set of all possible values of \(x\) is: \[ x = 2n\pi + 2\tan^{-1}(k) \quad \text{for } k \text{ in the range of roots found} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If x^2+2ax+a lt 0 AA x in [1, 2] then find set of all possible values of a

Find all possible values of (x^2+1)/(x^2-2) .

Find all possible values of (x^2+1)/(x^2-2) .

If x is rational and 4(x^(2)+(1)/(x^(2)))+16(x+(1)/(x))-57=0 , then the product of all possible values of x is

If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2| , then the set of all real values of x is

Find all the possible values of the expression: 1/(x^2+2)

If f(x)=x^(2)+2x-2 and if f(s-1)=1 , what is the smallest possible value of s ?

For x in R , find all possible values of (i)|x-3|-2 (ii) 4-|2x+3|

Find all the possible values of the expression sqrt(x^2-4) .

If the equation (x/(1+x^2))^2+a(x/(1+x^2))+3=0 has exactly two real roots which are distinct, then the set of possible real values of a is ((-13)/2,0) (b) (oo,-(13)/2) ((-13)/2,(13)/2) (d) ((13)/2,oo)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The general solution of the equation "tan" 3x = "tan" 5x, is

    Text Solution

    |

  2. The number of all possible ordered pairs (x, y), x, y in R satisfying ...

    Text Solution

    |

  3. If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)])...

    Text Solution

    |

  4. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  5. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  6. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  7. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  8. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  9. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  10. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  11. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  12. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  13. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  14. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  15. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |

  16. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  17. The general solution of the equation sin^2thetasectheta+sqrt3 tantheta...

    Text Solution

    |

  18. If X=x cos theta-y sin theta, Y=x sin theta+y cos theta and X^(2)+4XY...

    Text Solution

    |

  19. The equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(2)x) = 28 is satisfi...

    Text Solution

    |

  20. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |