Home
Class 12
MATHS
If theta(1), theta(2), theta(3), theta(4...

If `theta_(1), theta_(2), theta_(3), theta_(4)` are roots of the equation `"sin" (theta + alpha) =k "sin"2theta` no two of which differ by a multiple of `2pi`, then `theta_(1) + theta_(2) + theta_(3) + theta_(4)` is equal to

A

`2n pi, n in Z`

B

`(2n +1) pi, n in Z`

C

`n pi, n in Z`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the roots \( \theta_1 + \theta_2 + \theta_3 + \theta_4 \) of the equation \( \sin(\theta + \alpha) = k \sin(2\theta) \). ### Step 1: Rewrite the given equation We start with the equation: \[ \sin(\theta + \alpha) = k \sin(2\theta) \] Using the identity for \( \sin(a + b) \), we can expand the left-hand side: \[ \sin(\theta + \alpha) = \sin(\theta)\cos(\alpha) + \cos(\theta)\sin(\alpha) \] Thus, the equation becomes: \[ \sin(\theta)\cos(\alpha) + \cos(\theta)\sin(\alpha) = k \cdot 2\sin(\theta)\cos(\theta) \] ### Step 2: Substitute \( \sin(\theta) \) and \( \cos(\theta) \) Using the half-angle identities: \[ \sin(\theta) = \frac{2t}{1 + t^2}, \quad \cos(\theta) = \frac{1 - t^2}{1 + t^2} \] where \( t = \tan\left(\frac{\theta}{2}\). Substituting these into the equation gives: \[ \frac{2t}{1 + t^2}\cos(\alpha) + \frac{1 - t^2}{1 + t^2}\sin(\alpha) = k \cdot 2 \cdot \frac{2t}{1 + t^2} \cdot \frac{1 - t^2}{1 + t^2} \] ### Step 3: Clear the denominator Multiply through by \( 1 + t^2 \): \[ 2t\cos(\alpha) + (1 - t^2)\sin(\alpha) = k \cdot 4t(1 - t^2) \] ### Step 4: Rearranging the equation Rearranging gives: \[ 2t\cos(\alpha) + \sin(\alpha) - t^2\sin(\alpha) = 4kt - 4kt^3 \] This can be rearranged to form a polynomial in \( t \): \[ t^4(4k - \sin(\alpha)) + t^3(4k) + t^2\sin(\alpha) + 2t\cos(\alpha) + \sin(\alpha) = 0 \] ### Step 5: Identify coefficients for the roots The polynomial is of the form: \[ At^4 + Bt^3 + Ct^2 + Dt + E = 0 \] where: - \( A = 4k - \sin(\alpha) \) - \( B = 4k \) - \( C = \sin(\alpha) \) - \( D = 2\cos(\alpha) \) - \( E = \sin(\alpha) \) ### Step 6: Use Vieta's formulas According to Vieta's formulas, the sum of the roots \( \theta_1 + \theta_2 + \theta_3 + \theta_4 \) can be expressed as: \[ \theta_1 + \theta_2 + \theta_3 + \theta_4 = -\frac{B}{A} = -\frac{4k}{4k - \sin(\alpha)} \] ### Step 7: Analyze the result Since the roots are distinct and do not differ by multiples of \( 2\pi \), we note that the sum of the angles can be expressed in terms of \( \pi \): \[ \theta_1 + \theta_2 + \theta_3 + \theta_4 = (2n + 1)\pi \] where \( n \) is an integer. ### Conclusion Thus, the final result is: \[ \theta_1 + \theta_2 + \theta_3 + \theta_4 = (2n + 1)\pi \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The solution of the equation 1-"cos" theta = "sin" theta "sin" (theta)/(2) is

If (cos theta_(1))/(cos theta_(2))+(sin theta_(1))/(sin theta_(2))=(cos theta_(0))/(cos theta_(2))+(sin theta_(0))/(sin theta_(2))=1 , where theta_(1) and theta_(0) do not differ by can even multiple of pi , prove that (cos theta_(1)*cos theta_(0))/(cos^( 2)theta_(2))+(sin theta_(1)*sin theta_(0))/(sin^(2) theta_(2))=-1

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

The range of the function f (theta) =(sin theta)/( theta ) + (theta)/(tan theta) , theta in (0, (pi)/(2)) is equal to :

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If tan theta_1,tantheta_2,tan theta_3,tan theta_4 are the roots of the equation x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0 then prove that tan(theta_1+theta_2+theta_3+theta_4)=cot beta

If tan theta_1,tantheta_2,tan theta_3,tan theta_4 are the roots of the equation x^4-x^3sin2beta+x^2cos2beta-xcosbeta-sinbeta=0 then prove that tan(theta_1+theta_2+theta_3+theta_4)=cot beta

(1)/( sec 2 theta) = cos ^(4) theta - sin ^(4) theta.

For theta_(1), theta_(2), ...., theta_(n) in (0, pi/2) , if In (sec theta_(1)-tan theta_(1))+ "In" (sec theta_(2)-tan theta_(2))+...+"In" (sec theta_(n)-tan theta_(n))+ "ln" pi=0 , then the value of cos((sec theta_(1)+ tan theta_(1))(sec theta_(2)+tan theta_(2))....(sec theta_(n)+tan theta_(n))) is equal to

If 1/2 sin^(-1)((3sin2theta)/(5+4cos2theta))=(pi)/4 , then tan theta is equal to

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  2. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  3. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  4. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  5. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  6. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  7. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  8. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  9. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  10. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  11. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  12. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |

  13. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  14. The general solution of the equation sin^2thetasectheta+sqrt3 tantheta...

    Text Solution

    |

  15. If X=x cos theta-y sin theta, Y=x sin theta+y cos theta and X^(2)+4XY...

    Text Solution

    |

  16. The equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(2)x) = 28 is satisfi...

    Text Solution

    |

  17. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  18. The smallest positive values of x and y which satisfy "tan" (x-y) =1, ...

    Text Solution

    |

  19. The solution set of the inequality "cos"^(2) theta lt (1)/(2), is

    Text Solution

    |

  20. The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for -5/2lt=alphal...

    Text Solution

    |