Home
Class 12
MATHS
If sin(pi cos theta) = cos(pi sin theta...

If `sin(pi cos theta) = cos(pi sin theta)`, then the value of `cos(theta+- pi/4)` is

A

`"cos"(pi)/(4)`

B

`(1)/(2) "cos" (pi)/(4)`

C

`"cos"(pi)/(8)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\pi \cos \theta) = \cos(\pi \sin \theta) \) and find the value of \( \cos(\theta \pm \frac{\pi}{4}) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin(\pi \cos \theta) = \cos(\pi \sin \theta) \] ### Step 2: Use the co-function identity We know that: \[ \cos(\frac{\pi}{2} - x) = \sin(x) \] Thus, we can rewrite the right-hand side: \[ \cos(\pi \sin \theta) = \sin\left(\frac{\pi}{2} - \pi \sin \theta\right) \] This gives us: \[ \sin(\pi \cos \theta) = \sin\left(\frac{\pi}{2} - \pi \sin \theta\right) \] ### Step 3: Set the arguments equal Since the sine function is periodic, we can set the arguments equal to each other: \[ \pi \cos \theta = \frac{\pi}{2} - \pi \sin \theta + 2k\pi \quad \text{(for some integer } k\text{)} \] This simplifies to: \[ \pi \cos \theta + \pi \sin \theta = \frac{\pi}{2} + 2k\pi \] ### Step 4: Divide by \(\pi\) Dividing the entire equation by \(\pi\): \[ \cos \theta + \sin \theta = \frac{1}{2} + 2k \] ### Step 5: Express in terms of cosine and sine We can express \(\cos \theta + \sin \theta\) using the identity: \[ \cos \theta + \sin \theta = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \] Thus, we have: \[ \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{2} + 2k \] ### Step 6: Solve for \(\sin\) From this equation, we can isolate \(\sin\): \[ \sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}} + \frac{2k}{\sqrt{2}} \] ### Step 7: Find \( \cos(\theta \pm \frac{\pi}{4}) \) To find \( \cos(\theta \pm \frac{\pi}{4}) \), we use the cosine addition and subtraction formulas: \[ \cos(\theta \pm \frac{\pi}{4}) = \cos \theta \cos \frac{\pi}{4} \mp \sin \theta \sin \frac{\pi}{4} \] Since \( \cos \frac{\pi}{4} = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \), we have: \[ \cos(\theta \pm \frac{\pi}{4}) = \frac{1}{\sqrt{2}} (\cos \theta \mp \sin \theta) \] ### Step 8: Substitute \(\cos \theta + \sin \theta\) Using our previous result: \[ \cos \theta + \sin \theta = \frac{1}{2} + 2k \] We can express \(\cos \theta - \sin \theta\) using the identity: \[ \cos \theta - \sin \theta = \sqrt{2} \cos\left(\theta + \frac{\pi}{4}\right) \] ### Conclusion Thus, we conclude that: \[ \cos(\theta \pm \frac{\pi}{4}) = \frac{1}{\sqrt{2}} \left(\frac{1}{2} + 2k \mp \sqrt{2} \cos\left(\theta + \frac{\pi}{4}\right)\right) \] The final value of \( \cos(\theta \pm \frac{\pi}{4}) \) is: \[ \frac{1}{2\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

If sin (picot theta)=cos (pi tantheta), then

If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi//4) is equal to

If "sin" (pi "cos" theta) = "cos" (pi "sin" theta), then which one fo the following is correct?

If tan( pi cos theta) = cot ( pi sin theta) then sin (theta + pi/4) equals

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

If sin[(pi)/(4)cottheta] = cos[(pi)/(4)tantheta] then theta can be :

The function f(theta) = cos (pi sin^(2) theta) , is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. Show that the equation , sec theta + "cosec" theta = c has two roots...

    Text Solution

    |

  2. If theta(1), theta(2), theta(3), theta(4) are roots of the equation "s...

    Text Solution

    |

  3. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  4. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  5. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  6. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  7. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  8. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  9. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  10. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  11. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |

  12. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  13. The general solution of the equation sin^2thetasectheta+sqrt3 tantheta...

    Text Solution

    |

  14. If X=x cos theta-y sin theta, Y=x sin theta+y cos theta and X^(2)+4XY...

    Text Solution

    |

  15. The equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(2)x) = 28 is satisfi...

    Text Solution

    |

  16. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  17. The smallest positive values of x and y which satisfy "tan" (x-y) =1, ...

    Text Solution

    |

  18. The solution set of the inequality "cos"^(2) theta lt (1)/(2), is

    Text Solution

    |

  19. The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for -5/2lt=alphal...

    Text Solution

    |

  20. The equation "sin"^(4) x -2 "cos"^(2) x + a^(2) =0 is solvable if

    Text Solution

    |