Home
Class 12
MATHS
The general solution of "tan" ((pi)/(2)"...

The general solution of `"tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"cos"theta)`, is

A

`theta= 2r pi + (pi)/(2)`

B

`theta =2r pi`

C

`theta =2r pi + (pi)/(2) " and " theta = 2r pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan\left(\frac{\pi}{2} \sin \theta\right) = \cot\left(\frac{\pi}{2} \cos \theta\right) \), we will follow these steps: ### Step 1: Rewrite the cotangent in terms of tangent We know that \( \cot x = \tan\left(\frac{\pi}{2} - x\right) \). Therefore, we can rewrite the equation as: \[ \tan\left(\frac{\pi}{2} \sin \theta\right) = \tan\left(\frac{\pi}{2} - \frac{\pi}{2} \cos \theta\right) \] This simplifies to: \[ \tan\left(\frac{\pi}{2} \sin \theta\right) = \tan\left(\frac{\pi}{2}(1 - \cos \theta)\right) \] ### Step 2: Set the arguments equal Since \( \tan A = \tan B \) implies \( A = B + n\pi \) (where \( n \) is any integer), we can write: \[ \frac{\pi}{2} \sin \theta = \frac{\pi}{2}(1 - \cos \theta) + n\pi \] ### Step 3: Simplify the equation Dividing through by \( \frac{\pi}{2} \): \[ \sin \theta = 1 - \cos \theta + 2n \] Rearranging gives: \[ \sin \theta + \cos \theta = 1 + 2n \] ### Step 4: Use the identity for sine and cosine We can use the identity \( \sin \theta + \cos \theta = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \). Thus, we have: \[ \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) = 1 + 2n \] ### Step 5: Solve for the sine function Dividing both sides by \( \sqrt{2} \): \[ \sin\left(\theta + \frac{\pi}{4}\right) = \frac{1 + 2n}{\sqrt{2}} \] ### Step 6: Determine the general solution The sine function has a range of \([-1, 1]\), so \( \frac{1 + 2n}{\sqrt{2}} \) must also be in this range. We can express the general solution as: \[ \theta + \frac{\pi}{4} = \arcsin\left(\frac{1 + 2n}{\sqrt{2}}\right) + k\pi \] where \( k \) is any integer. ### Step 7: Solve for \( \theta \) Thus, we have: \[ \theta = \arcsin\left(\frac{1 + 2n}{\sqrt{2}}\right) - \frac{\pi}{4} + k\pi \] ### Final General Solution The general solution for the original equation is: \[ \theta = \arcsin\left(\frac{1 + 2n}{\sqrt{2}}\right) - \frac{\pi}{4} + k\pi \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ), AA theta in (0,2pi) is

Statement-1: The general solution of tan 5theta = cot 2theta is theta = (npi)/7 + pi/14 , n in Z . and Statement-2: The equation cos theta =k has exactly two solutions in [0, 2pi] for all k, -1 le k le 1 .

Find the general solution of tan ^(2) theta = (1)/(3), and hence find those values of theta for which - pi le theta le pi.

One of the general solutions of sqrt(3) cos theta-3 sin theta=4 sin 2 theta cos 3 theta is mpi+pi/(18),m in Z (mpi)/2+pi/6,AAm in Z m pi/3+pi/(18),m in Z none of these

The number of solutions of the equation "tan" theta + "sec" theta = 2 "cos" theta lying the interval [0, 2pi] is

General solution of the equation 4 cot 2 theta = cot^(2) theta - tan^(2) theta is theta =

The number of solution of the equation sin theta cos theta cos 2 theta .cos 4theta =1/2 in the interval [0,pi]

Number of solutions of the equation cot( theta ) + cot( theta +(pi)/(3))+ cos ( theta -(pi)/(3))+ cot( 3 theta ) =0 , where theta in ( 0,(pi)/(2))

The general solution of the equation 7cos^2theta+3sin^2theta=4 is theta=2npi+-pi/6,\ n Z b. theta=2npi+-(2pi)/3,\ n Z c. theta=2npi+-pi/3,\ n Z d. none of these

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. If sin(pi cos theta) = cos(pi sin theta), then the value of cos(the...

    Text Solution

    |

  2. If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi/...

    Text Solution

    |

  3. The general solution of "tan" ((pi)/(2)"sin" theta) ="cot"((pi)/(2)"co...

    Text Solution

    |

  4. The most general value of theta which satisfy both the equation cos th...

    Text Solution

    |

  5. The number of solutions of the x+2tanx = pi/2 in [0.2pi] is

    Text Solution

    |

  6. If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 the...

    Text Solution

    |

  7. The number of distinct roots of the equation A"sin"^(3) x + B"cos"^(3...

    Text Solution

    |

  8. Values of x between 0 and 2 pi which satisfy the equation sin x sqr...

    Text Solution

    |

  9. If Cos20^0=k and Cosx=2k^2-1, then the possible values of x between 0^...

    Text Solution

    |

  10. The general solution of the trigonometic equation "sin"x + "cos"x = 1...

    Text Solution

    |

  11. The general solution of the equation sin^2thetasectheta+sqrt3 tantheta...

    Text Solution

    |

  12. If X=x cos theta-y sin theta, Y=x sin theta+y cos theta and X^(2)+4XY...

    Text Solution

    |

  13. The equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(2)x) = 28 is satisfi...

    Text Solution

    |

  14. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  15. The smallest positive values of x and y which satisfy "tan" (x-y) =1, ...

    Text Solution

    |

  16. The solution set of the inequality "cos"^(2) theta lt (1)/(2), is

    Text Solution

    |

  17. The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for -5/2lt=alphal...

    Text Solution

    |

  18. The equation "sin"^(4) x -2 "cos"^(2) x + a^(2) =0 is solvable if

    Text Solution

    |

  19. The number of points in interval [ - (pi)/(2) , (pi)/(2)], where the ...

    Text Solution

    |

  20. If 1/6 sinx, cosx, tan x are in G.P. then x=,

    Text Solution

    |