Home
Class 12
MATHS
The equation sin^4x+cos^4x+sin2x+alpha=0...

The equation `sin^4x+cos^4x+sin2x+alpha=0` is solvable for `-5/2lt=alphalt=1/2` (b) `-3lt=alpha<1` `-3/2lt=alphalt=1/2` (d) `-1lt=alphalt=1`

A

`-(1)/(2) le alpha (1)/(2)`

B

`-3 le alpha le 1`

C

`-(3)/(2) le alpha le (1)/(2)`

D

`-1 le alpha le 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^4 x + \cos^4 x + \sin 2x + \alpha = 0 \) for the values of \( \alpha \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \sin^4 x + \cos^4 x + \sin 2x + \alpha = 0 \] Using the identity \( \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x \), and since \( \sin^2 x + \cos^2 x = 1 \), we can rewrite it as: \[ 1 - 2\sin^2 x \cos^2 x + \sin 2x + \alpha = 0 \] ### Step 2: Substitute \( \sin 2x \) Recall that \( \sin 2x = 2\sin x \cos x \). Thus, we can substitute this into the equation: \[ 1 - 2\sin^2 x \cos^2 x + 2\sin x \cos x + \alpha = 0 \] ### Step 3: Let \( y = \sin 2x \) Let \( y = \sin 2x \). Then \( \sin^2 x \cos^2 x = \frac{y^2}{4} \). Substituting this into the equation gives: \[ 1 - 2\left(\frac{y^2}{4}\right) + y + \alpha = 0 \] This simplifies to: \[ 1 - \frac{y^2}{2} + y + \alpha = 0 \] ### Step 4: Rearranging the Equation Rearranging gives us: \[ -\frac{y^2}{2} + y + (1 + \alpha) = 0 \] Multiplying through by -2 to eliminate the fraction: \[ y^2 - 2y - 2(1 + \alpha) = 0 \] ### Step 5: Finding the Discriminant For this quadratic equation in \( y \) to have real solutions, the discriminant must be non-negative: \[ D = (-2)^2 - 4 \cdot 1 \cdot (-2(1 + \alpha)) \geq 0 \] Calculating the discriminant: \[ D = 4 + 8(1 + \alpha) = 4 + 8 + 8\alpha = 12 + 8\alpha \geq 0 \] This simplifies to: \[ 8\alpha \geq -12 \quad \Rightarrow \quad \alpha \geq -\frac{3}{2} \] ### Step 6: Finding the Upper Bound The maximum value of \( y = \sin 2x \) is 1. Therefore, substituting \( y = 1 \) into the quadratic equation: \[ 1^2 - 2(1) - 2(1 + \alpha) = 0 \] This gives: \[ 1 - 2 - 2 - 2\alpha = 0 \quad \Rightarrow \quad -3 - 2\alpha = 0 \quad \Rightarrow \quad 2\alpha = -3 \quad \Rightarrow \quad \alpha = -\frac{3}{2} \] ### Step 7: Conclusion Combining the inequalities, we find: \[ -\frac{3}{2} \leq \alpha \leq \frac{1}{2} \] Thus, the equation is solvable for: \[ \boxed{-\frac{3}{2} \leq \alpha \leq \frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The equation "sin"^(4) x -2 "cos"^(2) x + a^(2) =0 is solvable if

The equation "sin"^(4) x -2 "cos"^(2) x + a^(2) =0 is solvable if

Solve the equation sin^4x+cos^4x-2sin^2x+(3sin^2 2x)/4=0

The equation sin^4x-2cos^2x+a^2=0 can be solved if (a) -sqrt(3)lt=alt=sqrt(3) (b) sqrt(2)lt=alt=""sqrt(2) (c) -""1lt=alt=a (d) none of these

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos ^2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin alpha + sin beta + sin gamma can be equal to

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos 2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin (alpha - beta ) is equal to

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos 2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 cos alpha + cos beta + cos gamma can be equal to

Solve the equation sqrt3 cos x + sin x =1 for - 2pi lt x le 2pi.

The equation cos^(4)x-sin^(4)x+cos2x+alpha^(2)+alpha=0 will have at least one solution, if

If y=(sin^4x-cos^4x+sin^2xcos^2x)/(sin^4x+cos^4x+sin^2xcos^2x),x in (0,pi/2) , then (a) -3/2lt=ylt=1/2 (b) 1lt=ylt=1/2 (c) -5/3lt=ylt=1 (d) none of these

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The smallest positive values of x and y which satisfy "tan" (x-y) =1, ...

    Text Solution

    |

  2. The solution set of the inequality "cos"^(2) theta lt (1)/(2), is

    Text Solution

    |

  3. The equation sin^4x+cos^4x+sin2x+alpha=0 is solvable for -5/2lt=alphal...

    Text Solution

    |

  4. The equation "sin"^(4) x -2 "cos"^(2) x + a^(2) =0 is solvable if

    Text Solution

    |

  5. The number of points in interval [ - (pi)/(2) , (pi)/(2)], where the ...

    Text Solution

    |

  6. If 1/6 sinx, cosx, tan x are in G.P. then x=,

    Text Solution

    |

  7. Find the minimum value of 2^("sin" x) + 2^("cos" x)

    Text Solution

    |

  8. From the identity "sin" 3x = 3 "sin"x - 4"sin"^(3)x it follows that if...

    Text Solution

    |

  9. Find the most general solution of 2^1|cosx|+cos^2x+|cosx|^(3+oo)=4

    Text Solution

    |

  10. Let alpha, beta be any two positive values of x for which 2"cos"x, |"c...

    Text Solution

    |

  11. If max {5 sin theta + 3 sin ( theta - alpha )}=7 , then the set of pos...

    Text Solution

    |

  12. The most general value of theta for which "sin" theta-"cos" theta = ...

    Text Solution

    |

  13. The number of points of intersection of two curves y=2sinxa n dy=5x^2+...

    Text Solution

    |

  14. Let 2 sin^(2)x + 3 sin x -2 gt 0 and x^(2)-x -2 lt 0 ( x is measured ...

    Text Solution

    |

  15. The largest positive solution of 1+"sin"^(4) x = "cos"^(2) 3x " in " [...

    Text Solution

    |

  16. The set of values of x in (-pi, pi) satisfying the inequation |4"sin" ...

    Text Solution

    |

  17. If theta in [0, 5pi] and r in R such that 2 sin theta = r^(4) -2r^(2) ...

    Text Solution

    |

  18. If rsintheta=3, r=4(1+sintheta) where 0&lt;=theta&lt;=2pi then theta e...

    Text Solution

    |

  19. The solution set of the inequation "log"(1//2) "sin" x gt "log"(1//...

    Text Solution

    |

  20. If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a re...

    Text Solution

    |