Home
Class 12
MATHS
From the identity "sin" 3x = 3 "sin"x - ...

From the identity `"sin" 3x = 3 "sin"x - 4"sin"^(3)x` it follows that if x is real and `|x| lt 1`, then

A

`(3x-4x^(3)) lt 1`

B

`(3x-4x^(3)) le 1`

C

`(3x-4x^(3)) lt -1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem based on the identity \( \sin 3x = 3 \sin x - 4 \sin^3 x \) and the condition \( |x| < 1 \), we need to analyze the expression \( 3x - 4x^3 \) and determine if it is less than or equal to 1 for real values of \( x \) within the specified range. ### Step 1: Define the function Let \( f(x) = 3x - 4x^3 \). ### Step 2: Find the derivative To find the maximum and minimum values of \( f(x) \), we first compute the derivative: \[ f'(x) = 3 - 12x^2 \] ### Step 3: Set the derivative to zero To find critical points, we set the derivative equal to zero: \[ 3 - 12x^2 = 0 \] \[ 12x^2 = 3 \] \[ x^2 = \frac{1}{4} \] \[ x = \pm \frac{1}{2} \] ### Step 4: Evaluate the second derivative Next, we compute the second derivative to determine the nature of the critical points: \[ f''(x) = -24x \] ### Step 5: Analyze critical points - For \( x = \frac{1}{2} \): \[ f''\left(\frac{1}{2}\right) = -24 \cdot \frac{1}{2} = -12 \quad (\text{local maximum}) \] - For \( x = -\frac{1}{2} \): \[ f''\left(-\frac{1}{2}\right) = -24 \cdot \left(-\frac{1}{2}\right) = 12 \quad (\text{local minimum}) \] ### Step 6: Evaluate the function at critical points Now we evaluate \( f(x) \) at the critical points and the endpoints of the interval \( |x| < 1 \). - At \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = 3\left(\frac{1}{2}\right) - 4\left(\frac{1}{2}\right)^3 = \frac{3}{2} - 4 \cdot \frac{1}{8} = \frac{3}{2} - \frac{1}{2} = 1 \] - At \( x = -\frac{1}{2} \): \[ f\left(-\frac{1}{2}\right) = 3\left(-\frac{1}{2}\right) - 4\left(-\frac{1}{2}\right)^3 = -\frac{3}{2} + 4 \cdot \frac{1}{8} = -\frac{3}{2} + \frac{1}{2} = -1 \] ### Step 7: Conclusion The maximum value of \( f(x) \) occurs at \( x = \frac{1}{2} \) and is equal to 1. The minimum value occurs at \( x = -\frac{1}{2} \) and is equal to -1. Therefore, for \( |x| < 1 \): \[ f(x) = 3x - 4x^3 \leq 1 \] Thus, we conclude that for all real \( x \) such that \( |x| < 1 \), the expression \( 3x - 4x^3 \) is always less than or equal to 1.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

sin x sin 2x sin 3x

int sin x sin2x sin3x

int sin x .sin2x.sin3x dx

For x in (0, pi) , the equation "sin"x + 2"sin" 2x-"sin" 3x = 3 has

For x in (0, pi) , the equation "sin"x + 2"sin" 2x-"sin" 3x = 3 has

Solve 4 sin x sin 2x sin 4x = sin 3x .

The inequality 4 sin 3x + 5 ge 4 cos 2x + 5 sin x true for x in

The function f(x) = 4 sin^(3) x - 6 sin^(2) x + 12 sin x + 100 is strictly

Prove that: sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos (3x)/2

Prove that: cot 4x (sin 5x + sin 3x) = cot x (sin 5x - sin 3x)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. If 1/6 sinx, cosx, tan x are in G.P. then x=,

    Text Solution

    |

  2. Find the minimum value of 2^("sin" x) + 2^("cos" x)

    Text Solution

    |

  3. From the identity "sin" 3x = 3 "sin"x - 4"sin"^(3)x it follows that if...

    Text Solution

    |

  4. Find the most general solution of 2^1|cosx|+cos^2x+|cosx|^(3+oo)=4

    Text Solution

    |

  5. Let alpha, beta be any two positive values of x for which 2"cos"x, |"c...

    Text Solution

    |

  6. If max {5 sin theta + 3 sin ( theta - alpha )}=7 , then the set of pos...

    Text Solution

    |

  7. The most general value of theta for which "sin" theta-"cos" theta = ...

    Text Solution

    |

  8. The number of points of intersection of two curves y=2sinxa n dy=5x^2+...

    Text Solution

    |

  9. Let 2 sin^(2)x + 3 sin x -2 gt 0 and x^(2)-x -2 lt 0 ( x is measured ...

    Text Solution

    |

  10. The largest positive solution of 1+"sin"^(4) x = "cos"^(2) 3x " in " [...

    Text Solution

    |

  11. The set of values of x in (-pi, pi) satisfying the inequation |4"sin" ...

    Text Solution

    |

  12. If theta in [0, 5pi] and r in R such that 2 sin theta = r^(4) -2r^(2) ...

    Text Solution

    |

  13. If rsintheta=3, r=4(1+sintheta) where 0&lt;=theta&lt;=2pi then theta e...

    Text Solution

    |

  14. The solution set of the inequation "log"(1//2) "sin" x gt "log"(1//...

    Text Solution

    |

  15. If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a re...

    Text Solution

    |

  16. The equation "sin"^(4) theta + "cos"^(4) theta = a has a real solution...

    Text Solution

    |

  17. If 32"tan"^(8)theta" = 2"cos"^(2) alpha- 3"cos" alpha " and "3"cos" 2 ...

    Text Solution

    |

  18. The general value of theta satisfying tantheta tan(120^@-theta) tan(12...

    Text Solution

    |

  19. The solution of the equation "log"("cos"x) "sin" x + "log"("sin"x) "...

    Text Solution

    |

  20. The number of solutions of the equation tanx+secx=2cosx lying in the i...

    Text Solution

    |