Home
Class 12
MATHS
The set of values of x in (-pi, pi) sati...

The set of values of x in `(-pi, pi)` satisfying the inequation `|4"sin" x-1| lt sqrt(5)`, is

A

`(-pi//10, 3pi//10)`

B

`(-pi//10, pi)`

C

`(-pi, pi)`

D

`(-pi, 3pi//10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |4 \sin x - 1| < \sqrt{5} \) for \( x \) in the interval \( (-\pi, \pi) \), we will follow these steps: ### Step 1: Remove the absolute value The inequality \( |4 \sin x - 1| < \sqrt{5} \) can be rewritten as two separate inequalities: \[ -\sqrt{5} < 4 \sin x - 1 < \sqrt{5} \] ### Step 2: Solve the left inequality Starting with the left part of the inequality: \[ 4 \sin x - 1 > -\sqrt{5} \] Adding 1 to both sides gives: \[ 4 \sin x > 1 - \sqrt{5} \] Dividing by 4: \[ \sin x > \frac{1 - \sqrt{5}}{4} \] ### Step 3: Solve the right inequality Now, for the right part of the inequality: \[ 4 \sin x - 1 < \sqrt{5} \] Adding 1 to both sides gives: \[ 4 \sin x < 1 + \sqrt{5} \] Dividing by 4: \[ \sin x < \frac{1 + \sqrt{5}}{4} \] ### Step 4: Find the numerical values Now we need to calculate the numerical values of \( \frac{1 - \sqrt{5}}{4} \) and \( \frac{1 + \sqrt{5}}{4} \). Calculating \( \sqrt{5} \) approximately gives \( 2.236 \): \[ \frac{1 - \sqrt{5}}{4} \approx \frac{1 - 2.236}{4} \approx \frac{-1.236}{4} \approx -0.309 \] \[ \frac{1 + \sqrt{5}}{4} \approx \frac{1 + 2.236}{4} \approx \frac{3.236}{4} \approx 0.809 \] ### Step 5: Set up the sine inequality Now we have: \[ -0.309 < \sin x < 0.809 \] ### Step 6: Find the angles corresponding to the sine values To find the angles \( x \) that satisfy these sine values, we can use the inverse sine function: 1. For \( \sin x = -0.309 \): - The reference angle is \( \theta = \arcsin(-0.309) \approx -0.314 \) radians (approximately). - The angles in the interval \( (-\pi, \pi) \) are: - \( x \approx -0.314 \) - \( x \approx \pi - (-0.314) \approx 3.456 \) (but this is outside the interval, so we discard it). 2. For \( \sin x = 0.809 \): - The reference angle is \( \theta = \arcsin(0.809) \approx 0.927 \) radians. - The angles in the interval \( (-\pi, \pi) \) are: - \( x \approx 0.927 \) - \( x \approx \pi - 0.927 \approx 2.214 \) (this is also within the interval). ### Step 7: Combine the results The solution set for \( x \) in the interval \( (-\pi, \pi) \) is: \[ x \in (-\frac{\pi}{10}, \frac{3\pi}{10}) \] ### Final Answer The set of values of \( x \) satisfying the inequality \( |4 \sin x - 1| < \sqrt{5} \) in the interval \( (-\pi, \pi) \) is: \[ \left(-\frac{\pi}{10}, \frac{3\pi}{10}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The complete set of values of x, x in (-(pi)/(2), pi) satisfying the inequality cos 2x gt |sin x| is :

The number of values of x in [0,2pi] satisfying the equation |cos x – sin x| >= sqrt2 is

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

Set of values of x lying in [0, 2pi] satisfying the inequality |sin x | gt 2 sin^(2) x contains

The set of all values of x satisfying the inequations |x-1| le 5 " and " |x|ge 2, is

The set of all values of x satisfying the inequations (x-1)^(3) (x+1) lt 0 is

Number of values of x in(-2pi,2pi) satisfying the equation 2^(sin^(2)x) +4. 2^(cos^(2)x) = 6 is

The set of all x in ((-pi)/2,pi/2) satisfying |4sinx-1| < sqrt(5) is given by

If the set of all values of x in (-pi/2,pi/2) satisfying |4sinx+ sqrt(2 ) |< sqrt(6) then find the value of x

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. Let 2 sin^(2)x + 3 sin x -2 gt 0 and x^(2)-x -2 lt 0 ( x is measured ...

    Text Solution

    |

  2. The largest positive solution of 1+"sin"^(4) x = "cos"^(2) 3x " in " [...

    Text Solution

    |

  3. The set of values of x in (-pi, pi) satisfying the inequation |4"sin" ...

    Text Solution

    |

  4. If theta in [0, 5pi] and r in R such that 2 sin theta = r^(4) -2r^(2) ...

    Text Solution

    |

  5. If rsintheta=3, r=4(1+sintheta) where 0&lt;=theta&lt;=2pi then theta e...

    Text Solution

    |

  6. The solution set of the inequation "log"(1//2) "sin" x gt "log"(1//...

    Text Solution

    |

  7. If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a re...

    Text Solution

    |

  8. The equation "sin"^(4) theta + "cos"^(4) theta = a has a real solution...

    Text Solution

    |

  9. If 32"tan"^(8)theta" = 2"cos"^(2) alpha- 3"cos" alpha " and "3"cos" 2 ...

    Text Solution

    |

  10. The general value of theta satisfying tantheta tan(120^@-theta) tan(12...

    Text Solution

    |

  11. The solution of the equation "log"("cos"x) "sin" x + "log"("sin"x) "...

    Text Solution

    |

  12. The number of solutions of the equation tanx+secx=2cosx lying in the i...

    Text Solution

    |

  13. One root of the equation "cos" theta-theta + (1)/(2) = 0 lies in the i...

    Text Solution

    |

  14. If "sin" (pi "cos" theta) = "cos" (pi "sin" theta), then which one fo ...

    Text Solution

    |

  15. If "2sec" (2alpha) = "tan" beta + "cot"beta, then one of the value of ...

    Text Solution

    |

  16. The values of k for which the equation sin^4 x+cos^4 x+sin2x+k=0 posse...

    Text Solution

    |

  17. "tan"|x| = |"tan" x|, if

    Text Solution

    |

  18. The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] ...

    Text Solution

    |

  19. If sin x cos x cos 2x = lambda has a solution, then lambda lies in the...

    Text Solution

    |

  20. If "sin "3theta = 4"sin" theta("sin"^(2) x-"sin"^(2)theta), theta ne n...

    Text Solution

    |