Home
Class 12
MATHS
If 32"tan"^(8)theta" = 2"cos"^(2) alpha-...

If `32"tan"^(8)theta" = 2"cos"^(2) alpha- 3"cos" alpha " and "3"cos" 2 theta = 1, "then" alpha =`

A

`2n pi, n in Z`

B

`2n pi +- (2pi)/(3), n in Z`

C

`2n pi +- (pi)/(3), n in Z`

D

`n pi +- (pi)/(3), n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps systematically: ### Step 1: Solve for \( \cos 2\theta \) Given the equation: \[ 3 \cos 2\theta = 1 \] We can isolate \( \cos 2\theta \): \[ \cos 2\theta = \frac{1}{3} \] **Hint:** Use the identity for \( \cos 2\theta \) in terms of \( \tan \theta \). ### Step 2: Use the double angle formula Using the double angle formula: \[ \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \] Substituting \( \cos 2\theta = \frac{1}{3} \): \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1}{3} \] **Hint:** Cross-multiply to eliminate the fraction. ### Step 3: Cross-multiply Cross-multiplying gives: \[ 3(1 - \tan^2 \theta) = 1 + \tan^2 \theta \] Expanding this, we get: \[ 3 - 3\tan^2 \theta = 1 + \tan^2 \theta \] **Hint:** Rearrange the equation to isolate terms involving \( \tan^2 \theta \). ### Step 4: Rearranging the equation Rearranging the equation leads to: \[ 3 - 1 = 3\tan^2 \theta + \tan^2 \theta \] This simplifies to: \[ 2 = 4\tan^2 \theta \] **Hint:** Solve for \( \tan^2 \theta \). ### Step 5: Solve for \( \tan^2 \theta \) Dividing both sides by 4 gives: \[ \tan^2 \theta = \frac{1}{2} \] **Hint:** Substitute this value into the next equation. ### Step 6: Substitute into the original equation Now, substitute \( \tan^2 \theta \) into the original equation: \[ 32 \tan^8 \theta = 2 \cos^2 \alpha - 3 \cos \alpha \] We know \( \tan^8 \theta = \left(\tan^2 \theta\right)^4 = \left(\frac{1}{2}\right)^4 = \frac{1}{16} \): \[ 32 \cdot \frac{1}{16} = 2 \cos^2 \alpha - 3 \cos \alpha \] This simplifies to: \[ 2 = 2 \cos^2 \alpha - 3 \cos \alpha \] **Hint:** Rearrange this into a standard quadratic form. ### Step 7: Rearranging into a quadratic equation Rearranging gives: \[ 2 \cos^2 \alpha - 3 \cos \alpha - 2 = 0 \] **Hint:** Use the quadratic formula to solve for \( \cos \alpha \). ### Step 8: Apply the quadratic formula Using the quadratic formula \( \cos \alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = -3, c = -2 \): \[ \cos \alpha = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} \] Calculating the discriminant: \[ \cos \alpha = \frac{3 \pm \sqrt{9 + 16}}{4} = \frac{3 \pm \sqrt{25}}{4} = \frac{3 \pm 5}{4} \] **Hint:** Calculate the two possible values for \( \cos \alpha \). ### Step 9: Calculate the values Calculating gives: 1. \( \cos \alpha = \frac{8}{4} = 2 \) (not possible since \( \cos \) must be between -1 and 1) 2. \( \cos \alpha = \frac{-2}{4} = -\frac{1}{2} \) **Hint:** Determine the angle corresponding to \( \cos \alpha = -\frac{1}{2} \). ### Step 10: Find \( \alpha \) The value \( \cos \alpha = -\frac{1}{2} \) corresponds to: \[ \alpha = \frac{2\pi}{3} + 2n\pi \quad \text{or} \quad \alpha = \frac{4\pi}{3} + 2n\pi \] where \( n \) is any integer. **Final Answer:** \[ \alpha = 2n\pi \pm \frac{2\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 32tan^3theta=2cos^2alpha-3 cosalpha and 3cos2theta =1 then the general value of alpha is

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)

cos alpha cos(60^(@) - alpha ) cos (60^(@) + alpha ) = 1/4 cos 3 alpha.

If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( cos ( 2 theta + alpha)) and tan 2 theta = lamda tan ( 3theta + alpha) then the value of lamda is ____________.

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

Solve the equation : cos^2 theta = cos^2 alpha

If alpha is a root of 25"cos"^(2) theta+ 5"cos" theta-12 = 0, (pi)/(2) lt alpha lt pi, " then sin"2 alpha is equal to

If alpha is a root of 25"cos"^(2) theta+ 5"cos" theta-12 = 0, (pi)/(2) lt alpha lt pi, " then sin"2 alpha is equal to

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The set of values of x in (-pi, pi) satisfying the inequation |4"sin" ...

    Text Solution

    |

  2. If theta in [0, 5pi] and r in R such that 2 sin theta = r^(4) -2r^(2) ...

    Text Solution

    |

  3. If rsintheta=3, r=4(1+sintheta) where 0<=theta<=2pi then theta e...

    Text Solution

    |

  4. The solution set of the inequation "log"(1//2) "sin" x gt "log"(1//...

    Text Solution

    |

  5. If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a re...

    Text Solution

    |

  6. The equation "sin"^(4) theta + "cos"^(4) theta = a has a real solution...

    Text Solution

    |

  7. If 32"tan"^(8)theta" = 2"cos"^(2) alpha- 3"cos" alpha " and "3"cos" 2 ...

    Text Solution

    |

  8. The general value of theta satisfying tantheta tan(120^@-theta) tan(12...

    Text Solution

    |

  9. The solution of the equation "log"("cos"x) "sin" x + "log"("sin"x) "...

    Text Solution

    |

  10. The number of solutions of the equation tanx+secx=2cosx lying in the i...

    Text Solution

    |

  11. One root of the equation "cos" theta-theta + (1)/(2) = 0 lies in the i...

    Text Solution

    |

  12. If "sin" (pi "cos" theta) = "cos" (pi "sin" theta), then which one fo ...

    Text Solution

    |

  13. If "2sec" (2alpha) = "tan" beta + "cot"beta, then one of the value of ...

    Text Solution

    |

  14. The values of k for which the equation sin^4 x+cos^4 x+sin2x+k=0 posse...

    Text Solution

    |

  15. "tan"|x| = |"tan" x|, if

    Text Solution

    |

  16. The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] ...

    Text Solution

    |

  17. If sin x cos x cos 2x = lambda has a solution, then lambda lies in the...

    Text Solution

    |

  18. If "sin "3theta = 4"sin" theta("sin"^(2) x-"sin"^(2)theta), theta ne n...

    Text Solution

    |

  19. If sin 2x cos 2x cos 4x=lambda has a solution then lambda lies in the...

    Text Solution

    |

  20. If the equation cos (lambda "sin" theta) = "sin" (lambda "cos" theta) ...

    Text Solution

    |