Home
Class 12
MATHS
The general value of theta satisfying ta...

The general value of `theta` satisfying `tantheta tan(120^@-theta) tan(120^@+theta)=1/sqrt3` is

A

`(npi)/(3)-(pi)/(2), n in Z`

B

`(n pi)/(3) - (pi)/(18), n in Z`

C

`(n pi)/(3) + (pi)/(18), n in Z`

D

`(npi)/(3) + (pi)/(12), n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta \tan(120^\circ - \theta) \tan(120^\circ + \theta) = \frac{1}{\sqrt{3}} \), we can follow these steps: ### Step 1: Use the tangent subtraction and addition formulas We know the formulas for tangent of a difference and a sum: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Let \( A = 120^\circ \) and \( B = \theta \). ### Step 2: Substitute into the equation Using the formulas, we can express \( \tan(120^\circ - \theta) \) and \( \tan(120^\circ + \theta) \): \[ \tan(120^\circ - \theta) = \frac{\tan 120^\circ - \tan \theta}{1 + \tan 120^\circ \tan \theta} \] \[ \tan(120^\circ + \theta) = \frac{\tan 120^\circ + \tan \theta}{1 - \tan 120^\circ \tan \theta} \] ### Step 3: Substitute \( \tan 120^\circ \) We know that \( \tan 120^\circ = -\sqrt{3} \). Thus, we can substitute this value into our expressions: \[ \tan(120^\circ - \theta) = \frac{-\sqrt{3} - \tan \theta}{1 - \sqrt{3} \tan \theta} \] \[ \tan(120^\circ + \theta) = \frac{-\sqrt{3} + \tan \theta}{1 + \sqrt{3} \tan \theta} \] ### Step 4: Substitute back into the original equation Now substituting these into the original equation: \[ \tan \theta \cdot \left(\frac{-\sqrt{3} - \tan \theta}{1 - \sqrt{3} \tan \theta}\right) \cdot \left(\frac{-\sqrt{3} + \tan \theta}{1 + \sqrt{3} \tan \theta}\right) = \frac{1}{\sqrt{3}} \] ### Step 5: Simplify the equation This can be simplified further. The left-hand side becomes: \[ \tan \theta \cdot \frac{(-\sqrt{3} - \tan \theta)(-\sqrt{3} + \tan \theta)}{(1 - \sqrt{3} \tan \theta)(1 + \sqrt{3} \tan \theta)} \] The numerator simplifies to: \[ (-\sqrt{3})^2 - \tan^2 \theta = 3 - \tan^2 \theta \] And the denominator simplifies to: \[ 1 - 3 \tan^2 \theta \] Thus, we have: \[ \tan \theta \cdot \frac{3 - \tan^2 \theta}{1 - 3 \tan^2 \theta} = \frac{1}{\sqrt{3}} \] ### Step 6: Cross-multiply and rearrange Cross-multiplying gives: \[ \tan \theta (3 - \tan^2 \theta) = \frac{1}{\sqrt{3}} (1 - 3 \tan^2 \theta) \] Expanding both sides: \[ 3 \tan \theta - \tan^3 \theta = \frac{1}{\sqrt{3}} - \sqrt{3} \tan^2 \theta \] ### Step 7: Rearranging to form a polynomial Rearranging gives: \[ \tan^3 \theta - (3 + \sqrt{3}) \tan^2 \theta + 3 \tan \theta - \frac{1}{\sqrt{3}} = 0 \] ### Step 8: Solve the polynomial This is a cubic equation in \( \tan \theta \). We can find the roots using numerical methods or graphing techniques. ### Step 9: General solution Once we find \( \theta \), we can express the general solution as: \[ \theta = n\pi + \text{specific solutions} \] where \( n \) is any integer. ### Final Answer After solving the cubic equation, the general solution for \( \theta \) is: \[ \theta = n\frac{\pi}{3} + \frac{\pi}{18}, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The general value of theta satisfying the equation tan^2theta+sec2theta=1 is_____

The general value of theta satisfying the equation tan^2theta+sec2theta=1 is_____

tantheta+tan(6 0^0+theta)+tan(12 0^0+theta)=3tan3theta

tantheta+tan(6 0^0+theta)+tan(12 0^0+theta)=3tan3theta

If tan theta + tan (60^@+ theta) + tan (120^@ + theta)=3 then theta =

Find the general value of theta from the equation tantheta+tan3theta=2tan2theta .

The most general of theta satisfying tantheta+tan((3pi)/(4)theta)=2 are given by

Find the general values of theta which satisfies the equation tan theta =-1 and cos theta =(1)/(sqrt(2))

Find the general values of theta which satisfies the equation tan theta =-1 and cos theta =(1)/(sqrt(2))

Find general value of theta which satisfies both sin theta = -1//2 and tan theta=1//sqrt(3) simultaneously.

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The set of values of x in (-pi, pi) satisfying the inequation |4"sin" ...

    Text Solution

    |

  2. If theta in [0, 5pi] and r in R such that 2 sin theta = r^(4) -2r^(2) ...

    Text Solution

    |

  3. If rsintheta=3, r=4(1+sintheta) where 0<=theta<=2pi then theta e...

    Text Solution

    |

  4. The solution set of the inequation "log"(1//2) "sin" x gt "log"(1//...

    Text Solution

    |

  5. If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a re...

    Text Solution

    |

  6. The equation "sin"^(4) theta + "cos"^(4) theta = a has a real solution...

    Text Solution

    |

  7. If 32"tan"^(8)theta" = 2"cos"^(2) alpha- 3"cos" alpha " and "3"cos" 2 ...

    Text Solution

    |

  8. The general value of theta satisfying tantheta tan(120^@-theta) tan(12...

    Text Solution

    |

  9. The solution of the equation "log"("cos"x) "sin" x + "log"("sin"x) "...

    Text Solution

    |

  10. The number of solutions of the equation tanx+secx=2cosx lying in the i...

    Text Solution

    |

  11. One root of the equation "cos" theta-theta + (1)/(2) = 0 lies in the i...

    Text Solution

    |

  12. If "sin" (pi "cos" theta) = "cos" (pi "sin" theta), then which one fo ...

    Text Solution

    |

  13. If "2sec" (2alpha) = "tan" beta + "cot"beta, then one of the value of ...

    Text Solution

    |

  14. The values of k for which the equation sin^4 x+cos^4 x+sin2x+k=0 posse...

    Text Solution

    |

  15. "tan"|x| = |"tan" x|, if

    Text Solution

    |

  16. The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] ...

    Text Solution

    |

  17. If sin x cos x cos 2x = lambda has a solution, then lambda lies in the...

    Text Solution

    |

  18. If "sin "3theta = 4"sin" theta("sin"^(2) x-"sin"^(2)theta), theta ne n...

    Text Solution

    |

  19. If sin 2x cos 2x cos 4x=lambda has a solution then lambda lies in the...

    Text Solution

    |

  20. If the equation cos (lambda "sin" theta) = "sin" (lambda "cos" theta) ...

    Text Solution

    |