Home
Class 12
MATHS
If "2sec" (2alpha) = "tan" beta + "cot"b...

If `"2sec" (2alpha) = "tan" beta + "cot"beta`, then one of the value of `alpha + beta` is

A

`pi`

B

`n pi - (pi)/(4), n in Z`

C

`(pi)/(4)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \sec(2\alpha) = \tan(\beta) + \cot(\beta) \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We start with the given equation: \[ 2 \sec(2\alpha) = \tan(\beta) + \cot(\beta) \] We know that: \[ \sec(2\alpha) = \frac{1}{\cos(2\alpha)} \] Thus, we can rewrite the left side: \[ 2 \sec(2\alpha) = \frac{2}{\cos(2\alpha)} \] ### Step 2: Simplify the right side using trigonometric identities The right side can be expressed as: \[ \tan(\beta) + \cot(\beta) = \frac{\sin(\beta)}{\cos(\beta)} + \frac{\cos(\beta)}{\sin(\beta)} \] To combine these fractions, we find a common denominator: \[ \tan(\beta) + \cot(\beta) = \frac{\sin^2(\beta) + \cos^2(\beta)}{\sin(\beta) \cos(\beta)} \] Using the Pythagorean identity \( \sin^2(\beta) + \cos^2(\beta) = 1 \), we have: \[ \tan(\beta) + \cot(\beta) = \frac{1}{\sin(\beta) \cos(\beta)} \] ### Step 3: Set the two sides equal Now we can equate both sides: \[ \frac{2}{\cos(2\alpha)} = \frac{1}{\sin(\beta) \cos(\beta)} \] ### Step 4: Cross-multiply to eliminate the fractions Cross-multiplying gives us: \[ 2 \sin(\beta) \cos(\beta) = \cos(2\alpha) \] ### Step 5: Use the double angle identity We know that: \[ \sin(2\beta) = 2 \sin(\beta) \cos(\beta) \] Thus, we can rewrite the equation as: \[ \sin(2\beta) = \cos(2\alpha) \] ### Step 6: Relate sine and cosine Using the identity \( \cos(x) = \sin\left(\frac{\pi}{2} - x\right) \), we can express \( \cos(2\alpha) \) as: \[ \cos(2\alpha) = \sin\left(\frac{\pi}{2} - 2\alpha\right) \] Thus, we have: \[ \sin(2\beta) = \sin\left(\frac{\pi}{2} - 2\alpha\right) \] ### Step 7: Set the angles equal Since the sine function is equal, we can set the angles equal to each other: \[ 2\beta = \frac{\pi}{2} - 2\alpha \] Rearranging gives: \[ 2\alpha + 2\beta = \frac{\pi}{2} \] ### Step 8: Solve for \( \alpha + \beta \) Dividing the entire equation by 2: \[ \alpha + \beta = \frac{\pi}{4} \] ### Final Answer Thus, one of the values of \( \alpha + \beta \) is: \[ \alpha + \beta = \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

if 2sec2alpha=tan beta+cot beta then one of the value of alpha+beta is (A) pi (B) npi- pi/4, n in ZZ (C) pi/4 (D) pi/2

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If cot(alpha+beta)=0\ ,\ then write the value of "sin"(alpha+2beta) .

Given that tan alpha = (m)/( m +1), tan beta = (1)/(2m +1) then what is the value of alpha + beta?

If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2beta) then the value of (2 sin^2 beta - sin^2 alpha ) where beta!= n pi is

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The set of values of x in (-pi, pi) satisfying the inequation |4"sin" ...

    Text Solution

    |

  2. If theta in [0, 5pi] and r in R such that 2 sin theta = r^(4) -2r^(2) ...

    Text Solution

    |

  3. If rsintheta=3, r=4(1+sintheta) where 0<=theta<=2pi then theta e...

    Text Solution

    |

  4. The solution set of the inequation "log"(1//2) "sin" x gt "log"(1//...

    Text Solution

    |

  5. If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a re...

    Text Solution

    |

  6. The equation "sin"^(4) theta + "cos"^(4) theta = a has a real solution...

    Text Solution

    |

  7. If 32"tan"^(8)theta" = 2"cos"^(2) alpha- 3"cos" alpha " and "3"cos" 2 ...

    Text Solution

    |

  8. The general value of theta satisfying tantheta tan(120^@-theta) tan(12...

    Text Solution

    |

  9. The solution of the equation "log"("cos"x) "sin" x + "log"("sin"x) "...

    Text Solution

    |

  10. The number of solutions of the equation tanx+secx=2cosx lying in the i...

    Text Solution

    |

  11. One root of the equation "cos" theta-theta + (1)/(2) = 0 lies in the i...

    Text Solution

    |

  12. If "sin" (pi "cos" theta) = "cos" (pi "sin" theta), then which one fo ...

    Text Solution

    |

  13. If "2sec" (2alpha) = "tan" beta + "cot"beta, then one of the value of ...

    Text Solution

    |

  14. The values of k for which the equation sin^4 x+cos^4 x+sin2x+k=0 posse...

    Text Solution

    |

  15. "tan"|x| = |"tan" x|, if

    Text Solution

    |

  16. The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] ...

    Text Solution

    |

  17. If sin x cos x cos 2x = lambda has a solution, then lambda lies in the...

    Text Solution

    |

  18. If "sin "3theta = 4"sin" theta("sin"^(2) x-"sin"^(2)theta), theta ne n...

    Text Solution

    |

  19. If sin 2x cos 2x cos 4x=lambda has a solution then lambda lies in the...

    Text Solution

    |

  20. If the equation cos (lambda "sin" theta) = "sin" (lambda "cos" theta) ...

    Text Solution

    |