Home
Class 12
MATHS
If the equation cos (lambda "sin" theta)...

If the equation cos `(lambda "sin" theta) = "sin" (lambda "cos" theta)` has a solution in `[0, 2pi]`, then the smallest value of `lambda`, is

A

`(pi)/(sqrt(2))`

B

`sqrt(2)pi`

C

`(pi)/(2)`

D

`(pi)/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\lambda \sin \theta) = \sin(\lambda \cos \theta) \) for the smallest value of \( \lambda \) such that this equation has a solution in the interval \( [0, 2\pi] \), we can follow these steps: ### Step 1: Rewrite the equation The given equation is: \[ \cos(\lambda \sin \theta) = \sin(\lambda \cos \theta) \] We can use the identity that relates sine and cosine: \[ \sin(x) = \cos\left(\frac{\pi}{2} - x\right) \] Thus, we can rewrite the equation as: \[ \cos(\lambda \sin \theta) = \cos\left(\frac{\pi}{2} - \lambda \cos \theta\right) \] ### Step 2: Set the arguments equal Since the cosine function is periodic, we can set the arguments equal to each other: \[ \lambda \sin \theta = \frac{\pi}{2} - \lambda \cos \theta + 2k\pi \quad (k \in \mathbb{Z}) \] For simplicity, we will consider the case when \( k = 0 \): \[ \lambda \sin \theta + \lambda \cos \theta = \frac{\pi}{2} \] ### Step 3: Factor out \( \lambda \) We can factor \( \lambda \) out from the left-hand side: \[ \lambda (\sin \theta + \cos \theta) = \frac{\pi}{2} \] Thus, we can express \( \lambda \) as: \[ \lambda = \frac{\frac{\pi}{2}}{\sin \theta + \cos \theta} \] ### Step 4: Find the maximum of \( \sin \theta + \cos \theta \) To minimize \( \lambda \), we need to maximize \( \sin \theta + \cos \theta \). The maximum value of \( \sin \theta + \cos \theta \) can be found using the identity: \[ \sin \theta + \cos \theta = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \] The maximum value of \( \sin\left(\theta + \frac{\pi}{4}\right) \) is 1, so: \[ \max(\sin \theta + \cos \theta) = \sqrt{2} \] ### Step 5: Substitute back to find \( \lambda \) Now substituting back into the expression for \( \lambda \): \[ \lambda = \frac{\frac{\pi}{2}}{\sqrt{2}} = \frac{\pi}{2\sqrt{2}} = \frac{\pi \sqrt{2}}{4} \] ### Conclusion Thus, the smallest value of \( \lambda \) such that the equation has a solution in the interval \( [0, 2\pi] \) is: \[ \lambda = \frac{\pi \sqrt{2}}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|66 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If "sin" x = lambda has exactly one solution in [0, 9 pi//4] then the number of values of lambda , is

If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a real solution, then the shortest interval containing 'a', is

The solution of the equation 1-"cos" theta = "sin" theta "sin" (theta)/(2) is

The equation "sin"^(4) theta + "cos"^(4) theta = a has a real solution if

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

The equation "sin"^(6) x + "cos"^(6) x = lambda , has a solution if

If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactly two solutions for lambda in [a , b] , then the value of a+b is

If f(x)=lambda|sinx|+lambda^2|cosx|+g(lambda) has a period = pi/2 then find the value of lambda

If equation sin^(-1) (4 sin^(2)theta + sin theta) + cos^(-1) (6 sin theta - 1) = (pi)/(2) has 10 solution for theta in [0, n pi] , then find the minimum value of n

If the equation 2 cos x + cos 2 lambda x=3 has only one solution , then lambda is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Chapter Test
  1. The set of values of x in (-pi, pi) satisfying the inequation |4"sin" ...

    Text Solution

    |

  2. If theta in [0, 5pi] and r in R such that 2 sin theta = r^(4) -2r^(2) ...

    Text Solution

    |

  3. If rsintheta=3, r=4(1+sintheta) where 0<=theta<=2pi then theta e...

    Text Solution

    |

  4. The solution set of the inequation "log"(1//2) "sin" x gt "log"(1//...

    Text Solution

    |

  5. If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a re...

    Text Solution

    |

  6. The equation "sin"^(4) theta + "cos"^(4) theta = a has a real solution...

    Text Solution

    |

  7. If 32"tan"^(8)theta" = 2"cos"^(2) alpha- 3"cos" alpha " and "3"cos" 2 ...

    Text Solution

    |

  8. The general value of theta satisfying tantheta tan(120^@-theta) tan(12...

    Text Solution

    |

  9. The solution of the equation "log"("cos"x) "sin" x + "log"("sin"x) "...

    Text Solution

    |

  10. The number of solutions of the equation tanx+secx=2cosx lying in the i...

    Text Solution

    |

  11. One root of the equation "cos" theta-theta + (1)/(2) = 0 lies in the i...

    Text Solution

    |

  12. If "sin" (pi "cos" theta) = "cos" (pi "sin" theta), then which one fo ...

    Text Solution

    |

  13. If "2sec" (2alpha) = "tan" beta + "cot"beta, then one of the value of ...

    Text Solution

    |

  14. The values of k for which the equation sin^4 x+cos^4 x+sin2x+k=0 posse...

    Text Solution

    |

  15. "tan"|x| = |"tan" x|, if

    Text Solution

    |

  16. The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] ...

    Text Solution

    |

  17. If sin x cos x cos 2x = lambda has a solution, then lambda lies in the...

    Text Solution

    |

  18. If "sin "3theta = 4"sin" theta("sin"^(2) x-"sin"^(2)theta), theta ne n...

    Text Solution

    |

  19. If sin 2x cos 2x cos 4x=lambda has a solution then lambda lies in the...

    Text Solution

    |

  20. If the equation cos (lambda "sin" theta) = "sin" (lambda "cos" theta) ...

    Text Solution

    |