Home
Class 11
MATHS
Let f(x)=ax^2-bx+c^2 != 0 and f(x) != 0 ...

Let `f(x)=ax^2-bx+c^2 != 0 and f(x) != 0` for all `x in R.` Then (a) `a^2+c^2 2` (b) `c` (c) `a-3b+c^2 < 0` (d) non of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=ax^2-bx+c^2, b != 0 and f(x) != 0 for all x ∈ R . Then (a) a+c^2 2b (c) a-3b+c^2 < 0 (d) none of these

Let f(x)=ax^2-bx+c^2, b != 0 and f(x) != 0 for all x ∈ R . Then (a) a+c^2 2b (c) a-3b+c^2 < 0 (d) none of these

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

Let f(x)=ax^(2)+bx+c, if a>0 then f(x) has minimum value at x=

Let f(x) is ax^(2)+bx+c;(3a+b>0) and f(x)>=0 AA x in R, then minimum value of (4a+2b+c)/(3a+b) is

Let f(x)=ax^(2)+bx+c,a,b,c in Randa ne0 suppose f(x)gt0 for all x in R Let g(x)=f(x)+f(x)+f'(x) then