To solve the equation \( \frac{2 \frac{2}{5}}{2 \frac{1}{5}} = 2 \), we will follow these steps:
### Step 1: Convert Mixed Numbers to Improper Fractions
First, we need to convert the mixed numbers \( 2 \frac{2}{5} \) and \( 2 \frac{1}{5} \) into improper fractions.
- For \( 2 \frac{2}{5} \):
\[
2 \frac{2}{5} = 2 \times 5 + 2 = 10 + 2 = \frac{12}{5}
\]
- For \( 2 \frac{1}{5} \):
\[
2 \frac{1}{5} = 2 \times 5 + 1 = 10 + 1 = \frac{11}{5}
\]
### Step 2: Substitute the Improper Fractions into the Equation
Now substitute the improper fractions back into the equation:
\[
\frac{\frac{12}{5}}{\frac{11}{5}}
\]
### Step 3: Simplify the Division of Fractions
To divide fractions, we multiply by the reciprocal:
\[
\frac{12}{5} \div \frac{11}{5} = \frac{12}{5} \times \frac{5}{11}
\]
### Step 4: Cancel Common Factors
In the multiplication, we can cancel the \( 5 \) in the numerator and the denominator:
\[
\frac{12}{1} \times \frac{1}{11} = \frac{12}{11}
\]
### Step 5: Check if the Result Equals 2
Now we need to check if \( \frac{12}{11} \) equals \( 2 \). To do this, we can convert \( 2 \) into a fraction:
\[
2 = \frac{22}{11}
\]
### Step 6: Compare the Two Fractions
Now we compare \( \frac{12}{11} \) with \( \frac{22}{11} \):
\[
\frac{12}{11} \neq \frac{22}{11}
\]
### Conclusion
The left-hand side does not equal the right-hand side, so the equation \( \frac{2 \frac{2}{5}}{2 \frac{1}{5}} = 2 \) is not true.
Topper's Solved these Questions
FRACTIONS AND DECIMALS
NCERT EXEMPLAR|Exercise THINK AND DISCUSS |9 Videos
FRACTIONS AND DECIMALS
NCERT EXEMPLAR|Exercise EXERCISE |122 Videos
EXPONENTS AND POWERS
NCERT EXEMPLAR|Exercise EXERCISE|136 Videos
INTEGERS
NCERT EXEMPLAR|Exercise VOCOBULARY|5 Videos
Similar Questions
Explore conceptually related problems
The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :
Simplify: (2(1/2) + 1/5)/(2(1/2) // 1/5)
The value of 3(1)/(5) - [2(1)/(2) - ((5)/(6) - ((2)/(5) + (3)/(10) - (4)/(15))] is :
If the rank of the matrix [[4,2,1-x],[5,k,1],[6,3,1+x]] is 2 then .k= (5)/(2) ,x= (1)/(5) k= (5)/(2) , x!=(1)/(5) k= 1/5 , x= 5/2 none of these
Find (4)(2)/(5)-(2)(1)/(5)
(2)/(5)-:(1)/(2)=
If the surm of the first ten terms of the series,(1(3)/(5))^(2)+(2(2)/(5))^(2)+(3(1)/(5))^(2)+4^(2)+(4(4)/(5))^(2)+ is (16)/(5)m, then m is equal to
If the sum of the first ten terms of the series (1(3)/(5))^(2)+(2(2)/(5))^(2)+(3(1)/(5))^(2)+4^(2)+(4(4)/(5))^(2)+.. is (16)/(5)m, then m is equal to: (1)102(2)101(3)100(4)99
If A=[(2)/(3)1(5)/(3)(1)/(3)(2)/(3)(4)/(3)(7)/(3)2(2)/(3)] and B=[(2)/(3)(2)/(5)1(1)/(5)(2)/(5)(4)/(5)(4)/(5)(7)/(3)(6)/(5)(2)/(5)], then compute 3A_(-)=5B
NCERT EXEMPLAR-FRACTIONS AND DECIMALS-EXERCISE (FIND THE ERROR)