Home
Class 8
MATHS
If x=(1)/(3) and y=(6)/(7) then xy=(y)/(...

If `x=(1)/(3) and y=(6)/(7)` then `xy=(y)/(x)=`______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = \frac{1}{3} \) and \( y = \frac{6}{7} \), we need to find the values of \( xy \) and \( \frac{y}{x} \). ### Step-by-step Solution: 1. **Calculate \( xy \)**: \[ xy = x \times y = \frac{1}{3} \times \frac{6}{7} \] To multiply two fractions, multiply the numerators together and the denominators together: \[ xy = \frac{1 \times 6}{3 \times 7} = \frac{6}{21} \] Now, simplify \( \frac{6}{21} \): \[ \frac{6}{21} = \frac{2}{7} \quad \text{(dividing both numerator and denominator by 3)} \] 2. **Calculate \( \frac{y}{x} \)**: \[ \frac{y}{x} = \frac{6/7}{1/3} \] Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{y}{x} = \frac{6}{7} \times \frac{3}{1} = \frac{6 \times 3}{7 \times 1} = \frac{18}{7} \] 3. **Final Results**: We have calculated: \[ xy = \frac{2}{7} \quad \text{and} \quad \frac{y}{x} = \frac{18}{7} \] ### Summary: Thus, the values are: - \( xy = \frac{2}{7} \) - \( \frac{y}{x} = \frac{18}{7} \)
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    NCERT EXEMPLAR|Exercise Example (true or false) |2 Videos
  • RATIONAL NUMBERS

    NCERT EXEMPLAR|Exercise Example |13 Videos
  • RATIONAL NUMBERS

    NCERT EXEMPLAR|Exercise Think and Discuss |1 Videos
  • PLAYING WITH NUMBERS

    NCERT EXEMPLAR|Exercise Think and Discuss |1 Videos
  • SQUARE - SQUARE ROOT AND CUBE-CUBE ROOT

    NCERT EXEMPLAR|Exercise Exercise |52 Videos

Similar Questions

Explore conceptually related problems

x+2/y=6/3 and y+2/x=3 then xy=

If x+y=19 and x-y=7, then xy= ?

If x:y = 1:1, then (3x+4y)/(5x+6y) = ____.

(xy)/(x+y)=(6)/(5)(xy)/(y-x)=6

If x-y= (x+y)/(9)= (xy)/(6) then value of xy= ?

If x+y=7,xy=15 then x^(3)+y^(3)=

Find x and y when (7x-2y)/(xy)=5,(8x+7y)/(xy)=15

If (15x + 16y)/(25x + 4y) = (7)/(6) , then find x:y.

If y=xe^(-1//x)," then "x^(3)y_(2)-xy_(1)=