Home
Class 8
MATHS
Using appropriate properties, find (2)/(...

Using appropriate properties, find `(2)/(3)xx (-5)/(7) +(7)/(3) +(2)/(3) xx (-2)/(7)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{2}{3} \times \left(-\frac{5}{7}\right) + \frac{7}{3} + \frac{2}{3} \times \left(-\frac{2}{7}\right)\), we can follow these steps: ### Step 1: Identify and Group Terms We can group the terms involving \(\frac{2}{3}\) together: \[ \frac{2}{3} \times \left(-\frac{5}{7}\right) + \frac{2}{3} \times \left(-\frac{2}{7}\right) + \frac{7}{3} \] ### Step 2: Factor Out Common Terms Using the distributive property, we can factor out \(\frac{2}{3}\) from the first two terms: \[ \frac{2}{3} \left(-\frac{5}{7} - \frac{2}{7}\right) + \frac{7}{3} \] ### Step 3: Simplify Inside the Parentheses Now, simplify the expression inside the parentheses: \[ -\frac{5}{7} - \frac{2}{7} = -\frac{5 + 2}{7} = -\frac{7}{7} = -1 \] So, we have: \[ \frac{2}{3} \times (-1) + \frac{7}{3} \] ### Step 4: Multiply and Simplify Now, multiply: \[ -\frac{2}{3} + \frac{7}{3} \] ### Step 5: Combine the Terms Since the denominators are the same, we can combine the numerators: \[ \frac{-2 + 7}{3} = \frac{5}{3} \] ### Final Answer Thus, the value of the expression is: \[ \frac{5}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL NUMBERS

    NCERT EXEMPLAR|Exercise Example (Problem Solving Strategies)|1 Videos
  • RATIONAL NUMBERS

    NCERT EXEMPLAR|Exercise Exercise (Choose the correct answer) |25 Videos
  • RATIONAL NUMBERS

    NCERT EXEMPLAR|Exercise Example (true or false) |2 Videos
  • PLAYING WITH NUMBERS

    NCERT EXEMPLAR|Exercise Think and Discuss |1 Videos
  • SQUARE - SQUARE ROOT AND CUBE-CUBE ROOT

    NCERT EXEMPLAR|Exercise Exercise |52 Videos

Similar Questions

Explore conceptually related problems

Using appropriate properties find.(i) -(2)/(5)xx(3)/(5)+(5)/(2)-(3)/(5)xx(1)/(6)( ii) (2)/(5)xx(-(3)/(7))^(2)-(1)/(6)xx(3)/(2)+(1)/(14)xx(2)/(5)

Using appropriate properties find -(2)/(3)times(3)/(5)+(5)/(2)-(3)/(5)times(1)/(6)

Using appropriate properties find. (i) -(2)/(3)times(3)/(5)+(5)/(2)-(3)/(5)times(1)/(6) (ii) (2)/(5)times(-(3)/(7))-(1)/(6)times(3)/(2)+(1)/(14)times(2)/(5)

Tell which property allows you to compare (2)/(3) xx [(3)/(4) xx (5)/(7)] and [(2)/(3)xx(5)/(7)] xx (3)/(4)

2/5 xx (-3)/7 + 1/(14) xx 2/5

(3/2 xx (-7)/4) - ((-5)/2 xx 3/4)

Name the property used in the following. (-7)/(11)xx(-3)/(5)=(-3)/5xx(-7)/(11)