Home
Class 8
MATHS
Find the expansion of the using suitable...

Find the expansion of the using suitable identity.
`((4x )/( 5 ) + (y)/(4) ) ( ( 4x )/( 5) + ( 3y)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the expansion of the expression \(\left(\frac{4x}{5} + \frac{y}{4}\right) \left(\frac{4x}{5} + \frac{3y}{4}\right)\) using a suitable identity, we can use the identity for the product of two binomials: \[ (a + b)(c + d) = ac + ad + bc + bd \] ### Step-by-Step Solution: 1. **Identify the terms**: Let \(a = \frac{4x}{5}\), \(b = \frac{y}{4}\), \(c = \frac{4x}{5}\), and \(d = \frac{3y}{4}\). 2. **Apply the identity**: Using the identity, we can expand the expression: \[ \left(\frac{4x}{5} + \frac{y}{4}\right) \left(\frac{4x}{5} + \frac{3y}{4}\right) = ac + ad + bc + bd \] 3. **Calculate each term**: - **First term**: \[ ac = \left(\frac{4x}{5}\right) \left(\frac{4x}{5}\right) = \frac{16x^2}{25} \] - **Second term**: \[ ad = \left(\frac{4x}{5}\right) \left(\frac{3y}{4}\right) = \frac{12xy}{20} = \frac{3xy}{5} \] - **Third term**: \[ bc = \left(\frac{y}{4}\right) \left(\frac{4x}{5}\right) = \frac{4xy}{20} = \frac{xy}{5} \] - **Fourth term**: \[ bd = \left(\frac{y}{4}\right) \left(\frac{3y}{4}\right) = \frac{3y^2}{16} \] 4. **Combine all terms**: Now, combine all the calculated terms: \[ \frac{16x^2}{25} + \frac{3xy}{5} + \frac{xy}{5} + \frac{3y^2}{16} \] Combine the \(xy\) terms: \[ \frac{16x^2}{25} + \left(\frac{3xy}{5} + \frac{xy}{5}\right) + \frac{3y^2}{16} = \frac{16x^2}{25} + \frac{4xy}{5} + \frac{3y^2}{16} \] 5. **Final expression**: The final expanded expression is: \[ \frac{16x^2}{25} + \frac{4xy}{5} + \frac{3y^2}{16} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise EXERCISE |328 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

Find the expansion of the using suitable identity. (3x +7y) (3x - 7y)

Expand the using suitable identity. ((4)/(5) a + (5)/(4) b ) ^(2)

Find the product of the following binomials; (a^(2)+bc)(a^(2)-bc)( ii )((4x)/(5)-(3y)/(4))((4x)/(5)+(3y)/(4))

Find the each of the following products: (9x + 5y)(4x + 3y)

If x=3 and y=-1, find the values of each of the using identity: (9y^(2)-4x^(2))(81y^(4)+36x^(2)y^(2)+16x^(4))

Find the solution of the system of equation 4/x+5y=7 and 3/x+4y=5 .

Find the points of interesting of the lines 4x+3y=5 and x=2y-7

Multiply (4x+(3y)/(5)) and (3x-(4y)/(5))

y=log[a^(4x).((x-5)/(x+4))^((3)/(4))]

Find the point of intersection of the lines 2x-3y+8=0 and 4x+5y=6