Home
Class 8
MATHS
Fractorise the a ^(3) - 4a ^(2) + 12 -...

Fractorise the
`a ^(3) - 4a ^(2) + 12 - 3a `

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( a^3 - 4a^2 + 12 - 3a \), we can follow these steps: ### Step 1: Rearrange the terms First, we can rearrange the expression to group similar terms together: \[ a^3 - 4a^2 - 3a + 12 \] ### Step 2: Group the terms Next, we can group the terms in pairs: \[ (a^3 - 4a^2) + (-3a + 12) \] ### Step 3: Factor out the common factors Now, we can factor out the common factors from each group: - From the first group \( a^3 - 4a^2 \), we can factor out \( a^2 \): \[ a^2(a - 4) \] - From the second group \( -3a + 12 \), we can factor out \(-3\): \[ -3(a - 4) \] So, we can rewrite the expression as: \[ a^2(a - 4) - 3(a - 4) \] ### Step 4: Factor out the common binomial factor Now, we can see that \( (a - 4) \) is a common factor: \[ (a - 4)(a^2 - 3) \] ### Step 5: Factor the quadratic expression The expression \( a^2 - 3 \) can be further factored using the difference of squares: \[ a^2 - 3 = (a - \sqrt{3})(a + \sqrt{3}) \] ### Final Factorization Putting it all together, we have: \[ (a - 4)(a - \sqrt{3})(a + \sqrt{3}) \] ### Final Answer Thus, the complete factorization of the expression \( a^3 - 4a^2 + 12 - 3a \) is: \[ (a - 4)(a - \sqrt{3})(a + \sqrt{3}) \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise EXERCISE |328 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 20a ^(2) - 45 b ^(2)

Fractorise: x ^(3) - 64x

Fractorise the 4x ^(2) - 20 x + 25

Fractorise: 25 -a^(2) -b ^(2) - 2ab

Fractorise: 16 x^(5) - 144 x ^(3)

Fractorise: 36c ^(2) - (5a+b)^(2)

Fractorise the (y ^(2))/( 9) - 9

Fractorise: 16s ^(2) - 144

Fractorise: 12x ^(2) - 27

Fractorise: 63a ^(2) - 112b^(2)