Home
Class 8
MATHS
Fractorise the 4x ^(2) - 20 x + 25...

Fractorise the
`4x ^(2) - 20 x + 25`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \(4x^2 - 20x + 25\), we can follow these steps: ### Step 1: Identify the coefficients The given expression is \(4x^2 - 20x + 25\). Here, we can identify: - \(a = 4\) (coefficient of \(x^2\)) - \(b = -20\) (coefficient of \(x\)) - \(c = 25\) (constant term) ### Step 2: Rewrite the expression We can rewrite the expression in a form that allows us to factor it. Notice that \(4x^2\) can be expressed as \((2x)^2\) and \(25\) can be expressed as \(5^2\). Thus, we can rewrite the expression as: \[ (2x)^2 - 20x + 5^2 \] ### Step 3: Recognize the pattern The expression \(4x^2 - 20x + 25\) can be recognized as a perfect square trinomial. The general form of a perfect square trinomial is: \[ A^2 - 2AB + B^2 = (A - B)^2 \] In our case: - \(A = 2x\) - \(B = 5\) ### Step 4: Apply the perfect square formula Using the perfect square formula, we can write: \[ 4x^2 - 20x + 25 = (2x - 5)^2 \] ### Step 5: Write the final factorized form Thus, the factorized form of the expression is: \[ (2x - 5)(2x - 5) \quad \text{or} \quad (2x - 5)^2 \] ### Final Answer: The factorization of \(4x^2 - 20x + 25\) is \((2x - 5)^2\). ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise EXERCISE |328 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 4x ^(2) -9y^(2)

Fractorise: 81-49x ^(2)

Fractorise: 12x ^(2) - 27

Fractorise the (y ^(2))/( 9) - 9

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise the a ^(3) - 4a ^(2) + 12 - 3a

Fractorise: 9a ^(2)b ^(2) - 25

Fractorise: 16s ^(2) - 144

Fractorise: x ^(2) - x (a + 2b) + 2ab

Fractorise: x ^(3) - 64x