Home
Class 8
MATHS
Fractorise the (y ^(2))/( 9) - 9...

Fractorise the
`(y ^(2))/( 9) - 9`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \(\frac{y^2}{9} - 9\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{y^2}{9} - 9 \] We can express \(9\) as \(\frac{81}{9}\) to have a common denominator: \[ \frac{y^2}{9} - \frac{81}{9} \] ### Step 2: Combine the fractions Now that we have a common denominator, we can combine the two fractions: \[ \frac{y^2 - 81}{9} \] ### Step 3: Recognize the difference of squares The numerator \(y^2 - 81\) can be recognized as a difference of squares, which follows the identity: \[ a^2 - b^2 = (a - b)(a + b) \] Here, \(a = y\) and \(b = 9\). Thus, we can factor it as: \[ y^2 - 81 = (y - 9)(y + 9) \] ### Step 4: Substitute back into the fraction Now we substitute this back into our expression: \[ \frac{(y - 9)(y + 9)}{9} \] ### Step 5: Final factorization The final factorized form of the expression is: \[ \frac{(y - 9)(y + 9)}{9} \] ### Summary The factorized form of \(\frac{y^2}{9} - 9\) is: \[ \frac{(y - 9)(y + 9)}{9} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise EXERCISE |328 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

Fractorise: 1- (b-c)^(2)

Fractorise the 4x ^(2) - 20 x + 25

Fractorise: 4x ^(2) -9y^(2)

Fractorise the a ^(3) - 4a ^(2) + 12 - 3a

Fractorise: 63a ^(2)b ^(2) -7

Fractorise: ab ^(2) + (a -1) b-1

Fractorise: x ^(2) -y ^(2) - 2y -1

Fractorise: 81-49x ^(2)

Factorise 4x^(2)-9y^(2)

Fractorise: ab (x ^(2) + y^(2) ) + xy (a^(2) + b ^(2)).