Home
Class 8
MATHS
Evaluate using suitable identitiie. 2....

Evaluate using suitable identitiie.
`2.07 xx 1.93`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( 2.07 \times 1.93 \) using suitable identities, we can follow these steps: ### Step 1: Rewrite the numbers We can express \( 2.07 \) and \( 1.93 \) in a different form: - \( 2.07 = 2.00 + 0.07 \) - \( 1.93 = 2.00 - 0.07 \) ### Step 2: Identify the identity We can use the identity: \[ (a + b)(a - b) = a^2 - b^2 \] Here, let \( a = 2.00 \) and \( b = 0.07 \). ### Step 3: Apply the identity Now, we can substitute \( a \) and \( b \) into the identity: \[ (2.00 + 0.07)(2.00 - 0.07) = 2.00^2 - 0.07^2 \] ### Step 4: Calculate \( a^2 \) and \( b^2 \) Now, we calculate: - \( 2.00^2 = 4.00 \) - \( 0.07^2 = 0.0049 \) ### Step 5: Substitute back into the equation Now, substitute these values back into the equation: \[ 4.00 - 0.0049 \] ### Step 6: Perform the subtraction Now, we perform the subtraction: \[ 4.00 - 0.0049 = 3.9951 \] ### Final Answer Thus, the value of \( 2.07 \times 1.93 \) is \( 3.9951 \). ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise EXERCISE |328 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate using suitable identitiie. 497 xx 505

Evaluate using suitable identitiie. (48) ^(2)

Evaluate using suitable identity (ii) 97xx103

Evaluate using suitable identitiie. 18 1 ^(2) - 19^(2)

Evaluate (98)^(3) using suitable identities

Evaluate by using suitable identity: (997)^(3) .

evaluate using suitable identities 1.(99)^(3)2.(103)^(3)

Evaluate (100.4)^2 by using suitable identities

Using suitable identity evaluate the 9.8 xx 10.2

Using suitable identity, evaluate the 101 xx 103