Home
Class 8
MATHS
Verify that (3x + 5y) ^(2) - 30 xy= 9x...

Verify that
`(3x + 5y) ^(2) - 30 xy= 9x ^(2) + 25 y ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the equation \((3x + 5y)^2 - 30xy = 9x^2 + 25y^2\), we will simplify the left-hand side (LHS) and show that it equals the right-hand side (RHS). ### Step 1: Expand the LHS We start with the left-hand side: \[ (3x + 5y)^2 - 30xy \] Using the formula for the square of a binomial, \((a + b)^2 = a^2 + 2ab + b^2\), where \(a = 3x\) and \(b = 5y\): \[ (3x + 5y)^2 = (3x)^2 + 2(3x)(5y) + (5y)^2 \] Calculating each term: \[ (3x)^2 = 9x^2, \quad 2(3x)(5y) = 30xy, \quad (5y)^2 = 25y^2 \] Thus, we have: \[ (3x + 5y)^2 = 9x^2 + 30xy + 25y^2 \] ### Step 2: Substitute Back into the LHS Now, substitute this back into the LHS: \[ LHS = 9x^2 + 30xy + 25y^2 - 30xy \] ### Step 3: Simplify the LHS Now, we can simplify the expression: \[ LHS = 9x^2 + 30xy - 30xy + 25y^2 \] The \(30xy\) terms cancel each other out: \[ LHS = 9x^2 + 25y^2 \] ### Step 4: Compare LHS and RHS Now, we can see that: \[ LHS = 9x^2 + 25y^2 \] And the right-hand side (RHS) is: \[ RHS = 9x^2 + 25y^2 \] Since \(LHS = RHS\), we have verified the equation. ### Conclusion Thus, we conclude that: \[ (3x + 5y)^2 - 30xy = 9x^2 + 25y^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise EXERCISE |328 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

If ((5x-y))/((5x + y)) =3/7, what is the value of ((4x ^(2) + y ^(2) -4 xy ))/( ( 9x ^(2) + 16 y^(2) + 24 xy)) ?

(5x + 3y) (5x-3y) (25x ^ (2) + 9y ^ (2))

Factorise 25x^(2) - 30xy + 9y^(2) . The following steps are involved in solving the above problem . Arrange them in sequential order . (A) (5x - 3y)^(2) " " [ because a^(2) - 2b + b^(2) = (a-b)^(2)] (B) (5x)^(2) - 30xy + (3y)^(2) = (5x)^(2) - 2(5x)(3y) + (3y)^(2) (C) (5x - 3y) (5x - 3y)

Add : 5x ^(2) - 3xy + 4y ^(2) - 9, 7y ^(2)+ 5xy - 2x ^(2) + 13

If x:y::5:2, then (x ^(2) - xy + y ^(2))/( x ^(2) + xy + y ^(2)) = ?

Add: 4x^(2) - 7xy + 4y^(2) - 3, 5 + 6y^(2) - 8xy + x^(2) and 6 - 2xy + 2x^(2) - 5y^(2)

Solve (9xy + 7 xy + 9x ^(2)) + ( 8 + x ^(2) - xy - y ^(2) + 1).

{:("Column" A ,, "Column" B), (225x^(2) - 625 y^(2) = ,, (a) 25(x-2) (x-2)), (x^(2) - x - y - y^(2) = ,, (b) 25(3x- 5y) (3x + 5y)), (x^(2) - x - y^(2) + y = ,, (x + y) (x - y- 1)), (25x^(2) - 100 x + 100 = ,, (d) (x - y) (x + y -1)), (,,(e) (x + y) (x + y - 1)):}

If A = 7x^(2) + 5xy - 9y^(2), B = - 4x^(2) + xy + 5y^(2) and C = 4y^(2) - 3x^(2) - 6xy then show that A + B + C = 0