Home
Class 8
MATHS
Verify that (11 pq + 4q) ^(2) - (11 pq -...

Verify that `(11 pq + 4q) ^(2) - (11 pq -4q) ^(2) = 17pq ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the expression \((11pq + 4q)^2 - (11pq - 4q)^2 = 17pq^2\), we will use the difference of squares formula, which states that \(a^2 - b^2 = (a - b)(a + b)\). ### Step 1: Identify \(a\) and \(b\) Let: - \(a = 11pq + 4q\) - \(b = 11pq - 4q\) ### Step 2: Apply the difference of squares formula Using the difference of squares formula: \[ (11pq + 4q)^2 - (11pq - 4q)^2 = (a - b)(a + b) \] ### Step 3: Calculate \(a - b\) \[ a - b = (11pq + 4q) - (11pq - 4q) = 11pq + 4q - 11pq + 4q = 8q \] ### Step 4: Calculate \(a + b\) \[ a + b = (11pq + 4q) + (11pq - 4q) = 11pq + 4q + 11pq - 4q = 22pq \] ### Step 5: Substitute back into the difference of squares formula Now substituting \(a - b\) and \(a + b\) into the formula: \[ (11pq + 4q)^2 - (11pq - 4q)^2 = (8q)(22pq) \] ### Step 6: Simplify the expression Now we simplify: \[ (8q)(22pq) = 176pq^2 \] ### Step 7: Conclusion We have shown that: \[ (11pq + 4q)^2 - (11pq - 4q)^2 = 176pq^2 \] However, the original expression we needed to verify was \(17pq^2\). Thus, we conclude that: \[ (11pq + 4q)^2 - (11pq - 4q)^2 \neq 17pq^2 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise EXERCISE |328 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

Verify that (p-q) ( p ^(2) + pq + q ^(2)) = p ^(3) - q ^(3)

Verify the (7p - 13q ) ^(2) + 364 pq = (7p + 13q) ^(2)

Simplify (pq - qr) ^(2) + 4 pq ^(2) r

show that (4pq+3q)^(2)-(4pq-3q)^(2)=48pq^(2)

pq ^(2) + q (p -1) -1= ?

Find the value of a, if pq ^(2) a = (4pq + 3q) ^(2) - ( 4pq - 3q) ^(2)

Common factor of 11 pq ^(2); 121 p ^(2) q ^(3) and 1331 p ^(2) q

(p-q)^(2)+4pq

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq