Home
Class 8
MATHS
By using sultable identity, evaluate x ^...

By using sultable identity, evaluate `x ^(2) + (1)/( x ^(2)).` If `x + (1)/(x) = 5.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( x^2 + \frac{1}{x^2} \) given that \( x + \frac{1}{x} = 5 \), we can use the algebraic identity: \[ \left( a + b \right)^2 = a^2 + b^2 + 2ab \] ### Step-by-Step Solution: 1. **Identify the variables**: Let \( a = x \) and \( b = \frac{1}{x} \). Thus, we have: \[ a + b = x + \frac{1}{x} = 5 \] 2. **Square both sides**: We will square the equation \( a + b = 5 \): \[ (a + b)^2 = 5^2 \] This gives us: \[ a^2 + b^2 + 2ab = 25 \] 3. **Substitute \( a^2 \) and \( b^2 \)**: We know that: \[ a^2 = x^2 \quad \text{and} \quad b^2 = \left(\frac{1}{x}\right)^2 = \frac{1}{x^2} \] Therefore, we can rewrite the equation as: \[ x^2 + \frac{1}{x^2} + 2ab = 25 \] 4. **Calculate \( 2ab \)**: Since \( ab = x \cdot \frac{1}{x} = 1 \), we have: \[ 2ab = 2 \cdot 1 = 2 \] 5. **Substitute \( 2ab \) back into the equation**: \[ x^2 + \frac{1}{x^2} + 2 = 25 \] 6. **Isolate \( x^2 + \frac{1}{x^2} \)**: To find \( x^2 + \frac{1}{x^2} \), we subtract 2 from both sides: \[ x^2 + \frac{1}{x^2} = 25 - 2 \] Thus, we get: \[ x^2 + \frac{1}{x^2} = 23 \] ### Final Answer: \[ x^2 + \frac{1}{x^2} = 23 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise EXERCISE |328 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate int (x+1)(2x-1)^(5/2)dx

If x=-2 and y=1, by using an identity find the value: ((2)/(x)-(x)/(2))((4)/(x^(2))+(x^(2))/(4)+1)])

If x-1/x=5 , find the value x^(2)+1/(x^(2)) and x^(4)+1/(x^(4))

Factorise the expression using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) x ^(2) + 2x + 1

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) 4x ^(2) + 4x +1

Evaluate underset(x to 1) (X - 1)/(2x^(2 - 7x + 5)

If x+(1)/(x)=5 , then find the value of x^(2)+(1)/(x^(2)) .

By using an appropriate identity , expand the following : (5x + (1)/(5x))^(2)