Home
Class 8
MATHS
The value of (3x ^(3) + 9x ^(2) + 27x)di...

The value of `(3x ^(3) + 9x ^(2) + 27x)div 3x` is

A

`x ^(2) + 9 + 27 x`

B

`3x ^(3) + 3x ^(2) + 27x`

C

`3x ^(3) + 9x ^(2) + 9`

D

`x ^(2) + 3x +9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3x^3 + 9x^2 + 27x) \div 3x\), we will follow the steps of polynomial long division. ### Step-by-Step Solution: 1. **Write the expression**: We start with the expression: \[ \frac{3x^3 + 9x^2 + 27x}{3x} \] 2. **Divide the first term**: Divide the first term of the numerator \(3x^3\) by the denominator \(3x\): \[ \frac{3x^3}{3x} = x^2 \] So, the first term of the quotient is \(x^2\). 3. **Multiply and subtract**: Now, multiply \(x^2\) by the entire denominator \(3x\): \[ x^2 \cdot 3x = 3x^3 \] Subtract this from the original polynomial: \[ (3x^3 + 9x^2 + 27x) - 3x^3 = 9x^2 + 27x \] 4. **Repeat the process**: Now, take the new expression \(9x^2 + 27x\) and divide the first term by \(3x\): \[ \frac{9x^2}{3x} = 3x \] So, the next term of the quotient is \(3x\). 5. **Multiply and subtract again**: Multiply \(3x\) by \(3x\): \[ 3x \cdot 3x = 9x^2 \] Subtract this from \(9x^2 + 27x\): \[ (9x^2 + 27x) - 9x^2 = 27x \] 6. **Final division**: Now, divide \(27x\) by \(3x\): \[ \frac{27x}{3x} = 9 \] So, the last term of the quotient is \(9\). 7. **Final multiplication and subtraction**: Multiply \(9\) by \(3x\): \[ 9 \cdot 3x = 27x \] Subtract this from \(27x\): \[ 27x - 27x = 0 \] 8. **Write the final answer**: Since there are no remaining terms, the quotient is: \[ x^2 + 3x + 9 \] ### Final Result: The value of \((3x^3 + 9x^2 + 27x) \div 3x\) is: \[ \boxed{x^2 + 3x + 9} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

If x = 2 then the value of x^(3) + 27x^(2) + 243x + 631 is

The value of (-27 x ^(2) y)div (- 9 xy ) is

If x-3/x=6,x ne 0 , then the value of (x^4-(27)/(x^2))/(x^2-3x-3) is :

If 0 lt theta lt 90^@, sin theta = 3/5 and x = cot theta ,then what is the value of 1 + 3x + 9x^2 + 27x^3 +81 x^4 +243x^5 ?