Home
Class 8
MATHS
The value of (a + b) ^(2) + (a-b) ^(2) i...

The value of `(a + b) ^(2) + (a-b) ^(2)` is

A

`2a + 2b`

B

`2a - 2b`

C

`2a ^(2) + 2b ^(2)`

D

`2a ^(2) - 2b ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((a + b)^2 + (a - b)^2\), we will expand each term using the algebraic identities for squares of binomials. ### Step-by-Step Solution: 1. **Expand \((a + b)^2\)**: \[ (a + b)^2 = a^2 + 2ab + b^2 \] 2. **Expand \((a - b)^2\)**: \[ (a - b)^2 = a^2 - 2ab + b^2 \] 3. **Add the two expansions together**: \[ (a + b)^2 + (a - b)^2 = (a^2 + 2ab + b^2) + (a^2 - 2ab + b^2) \] 4. **Combine like terms**: \[ = a^2 + 2ab + b^2 + a^2 - 2ab + b^2 \] \[ = a^2 + a^2 + b^2 + b^2 + 2ab - 2ab \] \[ = 2a^2 + 2b^2 \] 5. **Final Result**: \[ (a + b)^2 + (a - b)^2 = 2a^2 + 2b^2 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of ( a + b )^2 - 2 ( a - b )^2 + ( a - b ) ( a + b )