Home
Class 8
MATHS
a ^(2) - b ^(2) = (a +b) ""....

`a ^(2) - b ^(2) = (a +b) "____________".`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

(a ^ (2) + b ^ (2)) / (a ^ (2) -b ^ (2)) = (sin (A + B)) / (sin (AB))

(1)/(2) (a + b) (a ^(2) + b ^(2) ) +(1)/(2) (a - b) (a ^(2) - b ^(2)) is equal to

Multiply the (a ^(2) - b ^(2)). (a ^(2) + b ^(2))

Verify that (a ^(2) - b ^(2)) (a ^(2) + b ^(2)) + (b ^(2) - c ^(2)) (b ^(2) + c ^(2)) + (c ^(2)-a ^(2)) + (c ^(2) + a ^(2)) = 0

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

Show that (a - b)^(2), (a^(2) + b^(2)) " and " (a + b)^(2) are in AP.

If A={:[(a,b),(2,-1)]:},B={:[(1,1),(4,-1)]and(A+B)^(2)=A^(2)+B^(2) , then (b,a) = ______ .

If : sin theta = (a^(2)-b^(2))/(a^(2)+b^(2)), "then" : cot theta= A) (4a^(2)b^(2))/(a^(2) -b^(2)) B) (a^(2) + b^(2))/(a^(2) - b^(2)) C) (4a^(2)b^(2))/(a^(2) + b^(2)) D)none of these.