Home
Class 8
MATHS
(a +b) ^(2) = a ^(2) + b ^(2)...

`(a +b) ^(2) = a ^(2) + b ^(2)`

A

no

B

yes

C

cannot sure

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((a + b)^2 = a^2 + b^2\), we will start by using the algebraic identity for the square of a binomial. ### Step-by-step Solution: 1. **Recall the Identity**: The identity for the square of a binomial states: \[ (a + b)^2 = a^2 + b^2 + 2ab \] 2. **Set Up the Equation**: We start with the given equation: \[ (a + b)^2 = a^2 + b^2 \] 3. **Substitute the Identity**: Substitute the identity into the equation: \[ a^2 + b^2 + 2ab = a^2 + b^2 \] 4. **Simplify the Equation**: Now, we can subtract \(a^2 + b^2\) from both sides: \[ 2ab = 0 \] 5. **Solve for \(a\) and \(b\)**: The equation \(2ab = 0\) implies that either \(a = 0\) or \(b = 0\) (or both). This means: \[ a = 0 \quad \text{or} \quad b = 0 \] ### Conclusion: The solution to the equation \((a + b)^2 = a^2 + b^2\) is that either \(a\) or \(b\) must be zero.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

The factors of 1- (a ^(2) + b ^(2)) + a ^(2) b ^(2) are :

If a/b= 3/2, then (a ^(2) +b ^(2) )/(a ^(2) - b ^(2)) = ?

Multiply the (a ^(2) - b ^(2)). (a ^(2) + b ^(2))

Verify that (a ^(2) - b ^(2)) (a ^(2) + b ^(2)) + (b ^(2) - c ^(2)) (b ^(2) + c ^(2)) + (c ^(2)-a ^(2)) + (c ^(2) + a ^(2)) = 0

(a ^ (2) + b ^ (2)) / (a ^ (2) -b ^ (2)) = (sin (A + B)) / (sin (AB))

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

(1)/(2) (a + b) (a ^(2) + b ^(2) ) +(1)/(2) (a - b) (a ^(2) - b ^(2)) is equal to