Home
Class 8
MATHS
Common factor of 11 pq ^(2); 121 p ^(2)...

Common factor of `11 pq ^(2); 121 p ^(2) q ^(3) and 1331 p ^(2) q `

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS, IDENTITIES AND FACTORISATION

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS |2 Videos
  • COMPARING QUANTITIES

    NCERT EXEMPLAR|Exercise Think and Discuss|2 Videos

Similar Questions

Explore conceptually related problems

Verify that (11 pq + 4q) ^(2) - (11 pq -4q) ^(2) = 17pq ^(2)

Carry out the division : - 121 p ^(3) q ^(3) r ^(3)div (-11 xy ^(2) z ^(3))

Verify that (p-q) ( p ^(2) + pq + q ^(2)) = p ^(3) - q ^(3)

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

Subtract: 4pq - 5a^(2) - 3p^(2) "from" 5p^(2) + 3q^(2) - pq

If (x+2) is a common factor of (px^(2)+qx+r) and (qx^(2)+px+r) then a p=q or p+q+r=0 b p=r or p+q+r=0 c) q=r or p+q+r=0 d p=q=-(1)/(2)r

(121)^(3)xx11 div (1331)^(2)=(11)^(?)

If (x+a) be a common factor of x^2 + px + q and x^2 + p'x +q' , then the value of a is:

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)