Home
Class 8
MATHS
(2^(-3))^(2)xx(3^(-2))^(3)=...

`(2^(-3))^(2)xx(3^(-2))^(3)=`_____________

A

`5^(-6)`

B

`6^(6)`

C

`6^(-6)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2^{-3})^{2} \times (3^{-2})^{3}\), we will follow these steps: ### Step 1: Apply the power of a power rule The power of a power rule states that \((a^m)^n = a^{m \cdot n}\). We will apply this rule to both parts of the expression. \[ (2^{-3})^{2} = 2^{-3 \cdot 2} = 2^{-6} \] \[ (3^{-2})^{3} = 3^{-2 \cdot 3} = 3^{-6} \] ### Step 2: Combine the results Now we can combine the results from Step 1: \[ 2^{-6} \times 3^{-6} \] ### Step 3: Use the property of exponents We can use the property that states \(a^{-n} = \frac{1}{a^n}\). Thus, we can rewrite our expression: \[ 2^{-6} \times 3^{-6} = \frac{1}{2^6} \times \frac{1}{3^6} = \frac{1}{2^6 \times 3^6} \] ### Step 4: Combine the bases Using the property of exponents that states \((a \times b)^n = a^n \times b^n\), we can express the denominator: \[ \frac{1}{(2 \times 3)^6} = \frac{1}{6^6} \] ### Final Answer Thus, the final answer is: \[ \frac{1}{6^6} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS|2 Videos
  • EXPONENTS AND POWERS

    NCERT EXEMPLAR|Exercise EXERCISE|195 Videos
  • DIRECT AND INVERSE PROPORTIONS

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS|2 Videos
  • INTRODUCTION TO GRAPHS

    NCERT EXEMPLAR|Exercise EXERCISE |86 Videos

Similar Questions

Explore conceptually related problems

(-(2)/(3))^(2)xx(-(2)/(3))^(4)

(2/3)^(-2)xx(2/3)^(-5)=(2/3)^(10)

Solve : ((3^(-2))^(2)times(5^(2))^(-3)times(p^(-3))^(2))/((3^(-2))^(5)times(5^(3))^(-2)times(p^(-4))^(3))

Simplify: ((3^(-2))^(2)xx(5^(2))^(-3)xx(t^(-3))^(2))/((3^(-2))^(5)xx(5^(3))^(-2)xx(t^(-4))^(3))

((2)/(7))^(3)times((1)/(2))^(3)

(3^(2)-2^(2)) xx (frac(2)(3))^(-3)= ?

(2^2 xx 3^2 )/(2^(-2)) xx 3^(-1)

Arrange in descending order: 2^(2+3),(2^(2))^(3),2xx2^(2),(3^(5))/(3^(2)),3^(2)xx3^(@),2^(3)xx5^(2)

Simplify : ((2)/(3))^(2)xx((2)/(5))^(-3)xx((3)/(5))^(2)