Home
Class 8
MATHS
a^(p)xxb^(q)=(ab)^(pq)...

`a^(p)xxb^(q)=(ab)^(pq)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS|2 Videos
  • DIRECT AND INVERSE PROPORTIONS

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS|2 Videos
  • INTRODUCTION TO GRAPHS

    NCERT EXEMPLAR|Exercise EXERCISE |86 Videos

Similar Questions

Explore conceptually related problems

a^(m)xxb^(m)=(ab)^(m)

laws of Rational exponents are same as real exponents.(i) a^(p)xx a^(q)=a^(p+q)( ii) (a^(p))/(a^(q))=a^(p-q) (iii) (a^(p))^(q)=a^(pq)( iv )a^(-q)=(1)/(a^(q))

cos^(-1)((p)/(a))+cos^(-1)((q)/(b))=alpha then (p^(2))/(a^(2))-(2pq)/(ab)+(q^(2))/(b^(2)) equals

(p-q)^(2)+4pq

A transvers axis cuts the same branch of a hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at P and P' and the asymptotes at Q and Q'. Prove that PQ=P'Q' and PQ'=P'Q.

(p+q)/(pq)=2,(p-q)/(pq)=6 then find the value of p&q

In Q.No.7,HCF(a,b) is pq(b)p^(3)q^(3)(c)p^(3)q^(2) (d) p^(2)q^(2)

A transversal cut the same branch of a hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 in P,P' and the anymptotes in Q.Q' ,the value of (PQ+PQ')-(P'Q'-P'Q)