Home
Class 8
MATHS
Find x: 5^(x)+5^(x-1)=750...

Find x:
`5^(x)+5^(x-1)=750`

Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS|2 Videos
  • DIRECT AND INVERSE PROPORTIONS

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS|2 Videos
  • INTRODUCTION TO GRAPHS

    NCERT EXEMPLAR|Exercise EXERCISE |86 Videos

Similar Questions

Explore conceptually related problems

If 5^(2x-1)-(25)^(x-1)=2500 then find x

Find x so that (-5)^(x+1)xx(-5)^(5)=(-5)^(7)

Find x so that (-5)^(x+1)xx(-5)^(5)=(-5)^(7)

Find x such that 1/5^(5)xx1/5^(19)=1/5^(8x)

Find the value of x : 2(x-1) - 3( x -3 ) = 5 ( x -5 ) - 4 ( x - 8 )

Evaluate: (i) int(x+sqrt(x+1))/(x+2)dx (ii) int5^(5)*5^(x)5^(5)^^x5^(x)dx

Evaluate int(2^(x+1)-5^(x-1))/(10^(x))

Find the value of (-5) ^(x+1) times (-5 ) ^5 = (-5) ^7

If 5x=sec theta and (5)/(x)=tan theta, find the value of 5(x^(2)-(1)/(x^(2)))