Home
Class 8
MATHS
Simplify: [1/2^(2)-1/4^(3)]^-1xx2^(-3)...

Simplify:
`[1/2^(2)-1/4^(3)]^-1xx2^(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left[\frac{1}{2^2} - \frac{1}{4^3}\right]^{-1} \times 2^{-3}\), we will follow these steps: ### Step 1: Simplify the terms inside the brackets First, we need to evaluate \(\frac{1}{2^2}\) and \(\frac{1}{4^3}\). - \(2^2 = 4\), so \(\frac{1}{2^2} = \frac{1}{4}\). - \(4^3 = 64\), so \(\frac{1}{4^3} = \frac{1}{64}\). Now we can rewrite the expression: \[ \left[\frac{1}{4} - \frac{1}{64}\right]^{-1} \times 2^{-3} \] ### Step 2: Find a common denominator and subtract The common denominator for \(\frac{1}{4}\) and \(\frac{1}{64}\) is \(64\). - Convert \(\frac{1}{4}\) to have a denominator of \(64\): \[ \frac{1}{4} = \frac{16}{64} \] Now, we can perform the subtraction: \[ \frac{16}{64} - \frac{1}{64} = \frac{16 - 1}{64} = \frac{15}{64} \] ### Step 3: Substitute back into the expression Now we substitute back into the expression: \[ \left[\frac{15}{64}\right]^{-1} \times 2^{-3} \] ### Step 4: Apply the negative exponent Using the property of exponents \(x^{-m} = \frac{1}{x^m}\), we have: \[ \left[\frac{15}{64}\right]^{-1} = \frac{64}{15} \] Now, the expression becomes: \[ \frac{64}{15} \times 2^{-3} \] ### Step 5: Simplify \(2^{-3}\) Calculating \(2^{-3}\): \[ 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \] ### Step 6: Multiply the fractions Now we multiply: \[ \frac{64}{15} \times \frac{1}{8} = \frac{64 \times 1}{15 \times 8} = \frac{64}{120} \] ### Step 7: Simplify the fraction Now we can simplify \(\frac{64}{120}\): - The greatest common divisor (GCD) of \(64\) and \(120\) is \(8\). \[ \frac{64 \div 8}{120 \div 8} = \frac{8}{15} \] ### Final Answer Thus, the simplified expression is: \[ \frac{8}{15} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS|2 Videos
  • DIRECT AND INVERSE PROPORTIONS

    NCERT EXEMPLAR|Exercise THINK AND DISCUSS|2 Videos
  • INTRODUCTION TO GRAPHS

    NCERT EXEMPLAR|Exercise EXERCISE |86 Videos

Similar Questions

Explore conceptually related problems

Simplify: 1/4(1−2/3)2+1/3

Simplify: {(1/2)^2-(1/4)^3}xx2^3 (ii) {(3^2-2^2)-:(1/5)^2}

Simplify : (1): [(1/3)^(-3)-\ (1/2)^(-3)]-:(1/4)^(-3) (2): (2^2+\ 3^2-4^2)-:(3/2)^2

Simplify : 2^((2)/(3))xx2^((1)/(3))

Simplify (i) 2^((2)/(3)) xx 2^((1)/(3)) (ii) 2^((2)/(3)) xx 2^((1)/(5))

Simplify: (a^2-a)-1/2(1-3+a^2)

Simplify: 2/3+3/4+1/2

Simplify : 4 2/3+1/3-4 1/3

Simplify: (((-2)/3)^(-2))^(3)xx(1/3)^(-4)xx3^(-1)xx1/6

Simplify: (-(1)/(2))^(3)xx(2^(2))/(((2)/(3))^(2))