Home
Class 12
MATHS
Suppose a Matrix A satisfies A^(2)-5A+7I...

Suppose a Matrix A satisfies `A^(2)-5A+7I=0` .If `A^(5)=aA+bI` ,then the values of `2a+b` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose a matrix A satisfies A^(2)-5A+7I=0. If A^(5)=aA+bI, then the value of 2a+b is:

Suppose a matrix A satisfies A^(2)-5A+7I=0 . If A^(8)=aA+bI , find a-b.

If the matrix A=({:(0,2),(K,-1):}) satisfies A(A^(3)+3I)=2I , then then value of K is

Let matrix A=[[3,2],[1,1]] satisfies the equation A^2+aA+bI=0 then the value of |a+b| =

If A=[12221-2a2b] is a matrix satisfying AA^(T)=9I_(3), then find the values of a and b

Let A be a square matrix of order 3, A^(T) be the transpose matrix of matrix A and "AA"^(T)=4I . If d=|(2A^(T)+"AA"^(T)+adjA)/(2)|, then the value of 12d is equal to (|A|lt 0)

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

Let A be a square matrix satisfying A^(2)+5A+5I=0 . The inverse of A+2I is equal to :

Let A be a square matrix satisfying A^(2)+5A+5I=0 the inverse of A+2l is equal to