Home
Class 12
MATHS
The number of positive integral solution...

The number of positive integral solutions of `x_(1)*x_(2)*x_(3)=30` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be a factor of 120. The number of positive integral solution of x_(1)x_(2)x_(3)=A is :

Let y be an element of the set A={1,2,3,4,5,6,10,15,30} and x_(1) , x_(2) , x_(3) be integers such that x_(1)x_(2)x_(3)=y , then the number of positive integral solutions of x_(1)x_(2)x_(3)=y is

If N is the number of positive integral solutions of x_(1)x_(2)x_(3)x_(4)=770, then N=

If n is the number of positive integral solutions of x_(1)x_(2)x_(3)x_(4)=210. Then

If N is the number of positive integral solutions of x_(1)x_(2)x_(3)x_(4)=770, then N=(A)1800(B)1600(C)1400(D) None

Statement-1: If N the number of positive integral solutions of x_(1)x_(2)x_(3)x_(4)=770 , then N is divisible by 4 distinct prime numbers. Statement-2: Prime numbers are 2,3,5,7,11,13, . .

The total number of positive integral solution of 15

If the total number of positive integral solution of 15ltx_(1)+x_(2)+x_(3)le20 is k, then the value of (k)/(100) is equal to

If n is the number of positive integral solution of x_(1), x_(2)x_(3)x_(4) = 210 , then which of the following is incorrect ?