Home
Class 12
MATHS
If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) "...

If `f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2)",", 0 le x le 1):}` is continuous in [-1,1] then p is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={((sqrt(1+px)-sqrt(1-px))/(x),,,-1 le x lt 0),((2x+1)/(x-2),,,0le x le 1):} is continuous in the interval [-1,1], then p equals :

If f(x) = {((sqrt(1+kx)-sqrt(1-kx))/(x), "if" -1 le x lt 0),((2x+k)/(x-1), "if" 0 le x le1):} is continuous at x = 0, then the value of k is

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

If f(x)={((sqrt(1+kx)-sqrt(1-kx))/(x),",","for" -1 lex lt 0),(2x^(2)+3x-2,",","for" 0 le x le1):} is continuous at x=0 then find k

Let f(x)={{:((sqrt(1+ax)-sqrt(1-ax))/x ,","-1 le x lt 0),((2x+1)/(x-2), "," 0 le x le 1):} The value of a so f is continuous on [-1,1] is

If f(x)= {{:((sqrt(1+lambdax)- sqrt(1 - lambdax))/(x) "," -1 le x lt 0 ),((2x + 1)/(x - 2) ", " - 0le x lt 1):} is continuous at x = 0 then lambda = ?

If f(x)= {{:((sqrt(1+kx)-sqrt(1-kx))/x", if "-1/2 lex lt 0),(2x^(2)+3x-2", if "0 le x le 1):} is continuous at x = 0 , then k = ….