Home
Class 11
MATHS
[" The value of determinant "|[1,-1,2],[...

[" The value of determinant "|[1,-1,2],[-2,3,5],[-2,0,-1]|=................],[" a) "1," b) "21," c) "17," d) "3],[" a "],[" b "],[" c "],[" a "]

Promotional Banner

Similar Questions

Explore conceptually related problems

" 0.The value of the determinant "|[1,x,x^(2)],[1,b,b^(2)],[1,c,c^(2)]|" is: "

Find the values of following determinants. (1) |[-1,7],[2,4]| (2) |[5,3],[-7,0]| (3) |[7/3,5/3],[3/2,1/2]|

The value of the determinant |(1+a, 1, 1),(1, 1+a, 1),(1, 1, 1+a)| is zero if (A) a=-3 (B) a=0 (C) a=2 (D) a=1

1.If |[2x,-1],[4,2]|=|[3,0],[2,1]| ,then value of x is (a) 3 (b) 2/3 (c) 3/2 (d) -1/4

Find the value of a tetrahedrn whose vertices are A(-1,2,3),B(3,-2,1),C(2,1,3) and D(-1,-2,4).

If a^2+b^2+c^2+ab+bc+ca<=0 AA a, b, c in R then find the value of the determinant |[(a+b+2)^2, a^2+b^2, 1] , [1, (b+c+2)^2, b^2+c^2] , [c^2+a^2, 1, (c+a+2)^2]| : (A) abc(a^2 + b^2 +c^2) (B) 0 (C) a^3+b^3+c^3 + 3abc (D) 65

" If "A=[[1,-1,1],[0,2,-3],[2,1,0]]" and "B=(adj A)" and "C=5A" ,then find the value of "(|adj B)/(|C|)

The value of k for which the points A (1, 0, 3), B(-1, 3, 4), C(1, 2, 1) and D(k, 2, 5) are coplanar, are

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

If A=[{:(" "1," "0,-2),(" "3,-1," "0),(-2," "1," "1):}],B=[{:(" "0,5,-4),(-2,1," "3),(-1,0," "2):}]" and "C=[{:(" "1," "5,2),(-1," "1,0),(" "0,-1,1):}], verify that A(B-C)=(AB-AC).