Home
Class 12
MATHS
The circle x ^(2) + y ^(2) + 8y - 4=0, ...

The circle ` x ^(2) + y ^(2) + 8y - 4=0,` cuts the real circle `x ^(2) + y ^(2) + gx + 4=0` orthogonally, if g is :

A

any real number

B

for no real value of g

C

`g =0`

D

`g lt -2, g gt 2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the circles x ^(2) + y ^(2) - 8x - 6y + c= 0 and x ^(2) + y ^(2) - 2y + d =0 cut orthogonally, then c + d equals

The value of k, if the circles 2x ^(2) + 2y ^(2) - 4x + 6y = 3 and x ^(2) + y ^(2) + kx + y =0 cut orthogonally is

The length of the tangent drawn from any point on the circle x^(2) + y^(2) + 2f y + lambda = 0 to the circle x^(2) + y^(2) + 2f y + mu = 0 , where mu gt lambda gt 0 , is

If the circles x^(2) +y^(2) + ax -6y + 4 =0 and x^(2) + y^(2) - 12x + 32 =0 touch externally each other and if the distance between the centres is equal to 5, then the values of a are

If the circle x^(2)+y^(2)+4x+22y+c=0 bisects the circumference of the circle x^(2)+y^(2)-2x+8y-d=0 , then c+d is equal to a)30 b)50 c)40 d)56