Home
Class 12
MATHS
Any point on the hyperbola ((x +1) ^(2))...

Any point on the hyperbola `((x +1) ^(2))/( 16) - ((y + 2) ^(2))/( 4) = 1` is of the form:

A

a) `(4 sec theta, 2 tan theta)`

B

b) `( 4 sec theta + 1, 2 tan theta-2)`

C

c) `(4 sec theta -1,2 tan theta - 2)`

D

d) `(sec theta -4, tan theta -2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

One of the foci of the hyperbola (x ^(2))/( 16) - (y ^(2))/(9) =1 is

The line x cos alpha + y sin alpha = p touches the hyperbola (x ^(2))/( a ^(2)) - (y ^(2))/( b ^(2))= 1 , if :

If the eccentricity of the hyperbola (x ^(2))/(a ^(2)) -(y ^(2))/(b ^(2)) =1 is (5)/(4) and 2x + 3y - 6 =0 is a focal chord of the hyperbola, then the length of transvers axis is equal to a) 12//5 b) 6 c) 24//7 d) 24//5

If the length of the latusrectum and the length of transverse axis of a hyperbola are 4 sqrt3 and 2 sqrt3 respectively, then the equation of the hyperbola is a) (x ^(2))/( 3) - (y ^(2))/(4) =4 b) (x ^(2))/(3) - (y ^(2))/(6) =1 c) (x ^(2))/( 6) - (y ^(2))/(9) =1 d) (x ^(2))/( 6) - (y ^(2))/(3) =1

The foci of the ellipse (x^(2))/(16) + (y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(144) - (y^(2))/(81) =(1)/(25) coincide. Then the value of b^(2) is : a)1 b)5 c)7 d)9

The eccentricity of the ellipse (x^(2))/(36 ) + (y^(2))/(16) =1 is

The foci of the hyperbola (x ^(2))/( cos ^(2) alpha ) -( y ^(2))/( sin ^(2) alpha ) = 1 are

The point on the hyperbola 3x^(2) - 4y^(2) = 72 which is nearest to the line 3x + 2y + 1 = 0 is

If the ellipse (x^(2))/(16)+(y^(2))/(b^(2))=1 and the hyperbola (x^(2))/(100)-(4y^(2))/(225)=1 have the same directrices, then the value of b^(2) is

Let S_1 and S_2 be the focii of the ellipse (x^2)/( 16 ) + (y^2)/( 8) =1 . If A (x,y) is any point on the ellipse, then the maximum area of the Delta AS_1 S_2 (in sq units) is