Home
Class 12
MATHS
The locus of the middle point of the cho...

The locus of the middle point of the chord of the circle `x ^(2) + y ^(2) = a ^(2)` such that the chords passes through a given point `(x _(1) , y _(1)),` is :
a)`x ^(2) + y ^(2) - x x _(1) - y y _(1) =0` b)`x ^(2) + y ^(2) = x _(1) ^(2) + y _(1) ^(2)` c)`x + y = x _(2) + y _(1)` d)`x + y = x _(1) ^(2) + y _(1) ^(2)`

A

`x ^(2) + y ^(2) - x x _(1) - y y _(1) =0`

B

`x ^(2) + y ^(2) = x _(1) ^(2) + y _(1) ^(2)`

C

`x + y = x _(2) + y _(1)`

D

`x + y = x _(1) ^(2) + y _(1) ^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation of the sphere through the circle x ^(2) +y ^(2) + z ^(2) = 9, 2x + 3y + 4z = 5 and through the point (1,2,3) is 3 (x ^(2) + y ^(2) + z ^(2)) - 2x - 3y - 4z = C, then the value of C is

If (x _(1) , y _(1)) and (x _(2) y _(2)) are the ends of a focal chord of y ^(2) = 4 ax, then x _(1) x _(2) + y_(1) y _(2) is equal to :

If x_(1) , x _(2), x _(3) as well as y _(1), y _(2) , y _(3) are in GP with the same common ratio, then the point (x _(1) , y _(1)) , (x _(2) , y _(2)) and (x_(3) , y _(3)):