Home
Class 12
MATHS
The line x cos alpha + y sin alpha = p t...

The line `x cos alpha + y sin alpha = p` touches the hyperbola `(x ^(2))/( a ^(2)) - (y ^(2))/( b ^(2))= 1 ,` if :

A

`a ^(2) cos ^(2) alpha - b ^(2) sin ^(2) alpha = p^(2)`

B

`a ^(2) cos ^(2) alpha - b ^(2) sin ^(2) alpha = p`

C

`a ^(2) cos ^(2) alpha + b ^(2) sin ^(2) alpha = p ^(2) c`

D

`a ^(2) cos ^(2) alpha + b ^(2) sin ^(2) alpha = p`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The foci of the hyperbola (x ^(2))/( cos ^(2) alpha ) -( y ^(2))/( sin ^(2) alpha ) = 1 are

If the equation 3x + 3y + 5=0 is written in the form x cos alpha + y sin alpha = p , then the value of sin alpha + cos alpha is a) sqrt2 b) (1)/( sqrt2) c) - sqrt2 d) - (1)/( sqrt2)

Find the equations of the tangent and normal to the hyperbola (x^2)/a^2-(y^2)/b^2=1 at the point (x_0,y_0) .

If x= alpha cos ^(3) theta and y = alpha sin ^(3) theta, then 1 + ((dy)/(dx)) ^(2) is