Home
Class 12
MATHS
The shortest distance from the point (1,...

The shortest distance from the point `(1,2,-1)` to the surface of the sphere `x^(2)+y^(2)+z^(2)=54` is a)`3sqrt(6)` b)`2sqrt(6)` c)`sqrt(6)` d)2

A

`3 sqrt6` unit

B

`sqrt6` unit

C

`2 sqrt6` unit

D

2 unit

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The shortest distance from the plane 12x+4y+3z=327 to the sphere x^(2)+y^(2)+z^(2)+4x-2y-6z=155 is a)26 b) 11(44)/(13) c)13 d)39

The eccentricity of the hyperbola x ^(2) - y ^(2) = 4 is :a) sqrt3 b) 2 c) 1.5 d) sqrt2

The distance between the directrices of the hyperbola x^(2)-y^(2)=9 is a) 9/(sqrt(2)) b) 5/(sqrt(3)) c) 3/(sqrt(2)) d) 3sqrt(2)

The foot of the perpendicular from the point (1, 6, 3) to the line x/(1)=(y-1)/(2)=(z-2)/(3) is

The shortest distance between the circles (x-1) ^(2) + (y +2) ^(2) =1 and (x + 2) ^(2)+ (y-2) ^(2) = 4 is a)1 b)2 c)3 d)4

int_(0)^(2)[x^(2)]dx is :a) 2-sqrt(2) b) 2+sqrt(2) c) sqrt(2)-1 d) -sqrt(2)-sqrt(3)+5

The value of sqrt(2)(cos15^(@)-sin15^(@)) is equal to a) sqrt(3) b) sqrt(2) c)1 d)2

The eccentricity of the conic ((x+2)^(2))/(7)+(y-1)^(2)=14 is a) sqrt((7)/(8)) b) sqrt((6)/(17)) c) sqrt(3)/(2) d) sqrt((6)/(7))