Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then the value of `sin{(omega^(10)+omega^(23))pi-(pi)/(6)}` is a)`(1)/(sqrt(2))` b)`(sqrt(3))/(2)` c)`-(1)/(sqrt(2))` d)`(1)/(2)`

A

`(1)/(sqrt(2))`

B

`(sqrt(3))/(2)`

C

`-(1)/(sqrt(2))`

D

`(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then find (3+5omega+3omega^(2))^(2)+ (3 +3omega+5omega^(2))^(2)

If omega is an imaginary cube root of unity, then (1 + omega - omega^(2))^(7) is equal to

If omegane1 is a cube root of unity , then the value of |(1,1+i+w^2,w^2),(1-i,-1,w^2 -1),(-i,-1+w-i,-1)| , is

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)

If omega is a complex cube root of unity, then value of Delta=|(a_(1)+b_(1)omega,a_(1)omega^(2)+b_(1),c_(1)+b_(1)omega),(a_(2)+b_(2)omega,a_(2)omega^(2)+b_(2),c_(2)+b_(2)omega),(a_(3)+b_(3)omega,a_(3)omega^(2)+b_(3),c_(3)+b_(3)omega)| is a)0 b)-1 c)2 d)None of these

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

Let omega ne 1 be cube root of unity and (1 + omega ) ^(7)= a + omega. Then the value of a is

If omega be the complex cube root of unity and matrix H=[(omega,0),(0,omega)] , then H^(70) is equal to a)0 b)-H c)H d) H^(2)