Home
Class 12
MATHS
If alpha, beta, gamma are the cube roots...

If `alpha, beta, gamma` are the cube roots of a negative number p, then for any three real numbers x, y, z, the value of `(xalpha+ybeta+zgamma)/(xbeta+ygamma+zalpha)` is

A

`(1-isqrt(3))/(2)`

B

`(-1-isqrt(3))/(2)`

C

`(x+y+z)i`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the equation x^(3)+4x+1=0 , then find the value of (alpha+beta)^(-1) +(beta +gamma)^(-1) + (gamma+ alpha)^(-1)

If alpha, beta , gamma are the cube roots of unity, then the value of the determinant |{:(e^a,e^(2a),(e^(3a)-1)), (e^beta,e^(2 beta), (e^(2 beta)-1)), (e^gamma,e^(2gamma), (e^(3 gamma)-1)):}| is equal to

If alpha,beta,gamma are roots of the equation x^(2) (px+q)=r(x+1), then the value of determinant |(1+alpha,1,1),(1,1+beta,1),(1,1,1+gamma)| is a) alpha beta gamma b) 1+(1)/(alpha)+(1)/(beta)+(1)/(gamma) c)0 d)None of these

If alpha and beta are the distinct roots of ax^(2)+bx+c=0 , where a, b and c are non-zero real numbers, then (aalpha^(2)+balpha+6c)/(alphabeta^(2)+b beta+9c)+(abeta^(2)+b beta+19c)/(aalpha^(2)+balpha+13c) is equal to