Home
Class 12
MATHS
The magnitude and amplitude of ((1+isqrt...

The magnitude and amplitude of `((1+isqrt(3))(2+2i))/((sqrt(3)-i))` are, respectively
a)`2,(3pi)/(4)` b)`4,(3pi)/(4)`c)`2sqrt(2),(pi)/(4)` d)`2sqrt(2),(3pi)/(4)`

A

`2,(3pi)/(4)`

B

`4,(3pi)/(4)`

C

`2sqrt(2),(pi)/(4)`

D

`2sqrt(2),(3pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt(4+2sqrt(3))-sqrt(4-2sqrt(3)) is

If z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4) , then arg(z)=

The argument of the complex number ((i)/(2) - (2)/(i)) is equal to a) (pi)/(4) b) (3 pi)/(4) c) (pi)/(12) d) (pi)/(2)

If the sides of the triangle are p,q,sqrt(p^(2)+q^(2)+pq,) then the greatest angle is : a) (pi)/(2) b) (5pi)/(4) c) (2pi)/(3) d) (7pi )/(4)

(sqrt3+sqrt2)^(4)- (sqrt3-sqrt2)^(4) =

The value of "tan"15^(@)+"tan"75^(@) is a) 2sqrt(3) b)2 c) 2-sqrt(3) d)4

The value of tan^(-1) (2) + tan^(-1) (3) is equal to a) (3pi)/(4) b) (pi)/(4) c) (pi)/(3) d) tan^(-1) (6)

int_(0)^(2pi)e^(x/2)sin(x/2+pi/4)dx= a) 2pi b) e^(pi) c)0 d) 2sqrt(2)

The range of f(x) = sin^(-1) x+tan^(-1) x + sec^(-1) x is a) (pi/4,(3pi)/4) b) [pi/4,(3pi)/4] c) {(pi)/4,(3pi)/4} d)None of these

One of the principal solutions of sqrt(3) sec x=-2 is equal to a) (2pi)/(3) b) (pi)/(6) c) (5pi)/(6) d) (pi)/(3)