Home
Class 12
MATHS
Given tan A and tan B are the roots of e...

Given tan A and tan B are the roots of equation `x^(2)-ax+b=0`. The value of `sin^(2)(A+B)` is a)`(a^(2))/(a^(2)+(1-b)^(2))` b)`(a^(2))/(a^(2)+b^(2))` c)`(a^(2))/((a+b)^(2))` d)`(b^(2))/(a^(2)+(1-b)^(2))`

A

`(a^(2))/(a^(2)+(1-b)^(2))`

B

`(a^(2))/(a^(2)+b^(2))`

C

`(a^(2))/((a+b)^(2))`

D

`(b^(2))/(a^(2)+(1-b)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the equation ax ^(2) + bx + c =0, then the value of (1)/( a alpha + b) + (1)/( a beta + b) equals to : a) (ac)/(b) b) 1 c) (ab)/(c) d) (b)/(ac)

IF tan A and tan B are the roots of abx^2-c^2x+ab=0 where a,b,c are the sides of triangleABC then find sin^2A+sin^2B+sin^2C

tan [ i log ((a - ib)/(a + ib )) ] is equal to : a) ab b) (2 ab)/( a ^(2) - b ^(2)) c) (a ^(2) - b ^(2))/( 2 ab) d) (2 ab)/( a ^(2) + b ^(2))

If alphaandbeta are the two different roots of equation a costheta+bsintheta=c prove that (i) tan(alpha+beta)=(2ab)/(a^(2)-b^(2)) (ii) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))